SPRING CREEK MOUNTAIN VILLAGE UTILITY MASTER PLAN

Spring Creek

Prepared by

NOVEMBER 2003

SPRING CREEK MOUNTAIN VILLAGE UTILITY MASTER PLAN

TABLE OF CONTENTS

1.0	Introduction	Page 1
2.0	Water Distribution System	Page 2
	2.1 Existing Water System2.2 Proposed Water Network2.3 Design Criteria	Page 3
	2.3.1 Demand2.3.2 Minimum and Maximum Residual Water Pressures2.3.3 Fire Flows2.3.4 Hydraulic Losses	Page 4
	2.4 Methodology 2.5 Discussion of Results	Page 5
	2.5.1 Phases 1 & 2 2.5.2 Ultimate Development 2.6 Conclusions	Page 6 Page 7
3.0	Sanitary Sewer System	Page 8
	3.1 Existing Sanitary Sewer System 3.2 Proposed Sanitary Sewer Network	_
4.0	Stormwater Management System	Page 10
	4.1 Existing Stormwater Management System 4.2 Proposed Stormwater Management Network	5
	4.3 Methodology 4.4 Discussion of Results	Page 11 Page 12
	4.5 Conclusions	Page 13

Appendix 2-A – EPANET Output Data Appendix 4-B – SWYMHYMO Output Data

LIST OF TABLES

2.5.1.1	Stages 1 & 2 Node Data
2.5.1.2	Stages 1 & 2 Pipe Data
2.5.2.1	Ultimate Development Node Data
2.5.2.2	Ultimate Development Pipe Data

LIST OF EXHIBITS

2.1.1	Existing Watermains
2.2.1	Total Head Conditions
2.2.2	Stages 1 & 2 Water Network
2.2.3	Ultimate Water Network
3.1.1	Existing Sanitary Sewer
3.2.1	Stages 1 & 2 Sanitary Sewer
3.2.1	Ultimate Sanitary Sewer
4.2.1	Stormwater Management

14.127.203

APEGGA PERMIT #P07289

1.0 Introduction

The proposed redevelopment plan and location is described in detail within the ARP document itself. Location plans and detailed information on proposed land use are described in those sections.

The Utility Master Plan describes, generally, the proposed water, sanitary sewer, and storm servicing for the proposed Spring Creek Mountain Village development. The proposed servicing is based on a number of different factors, including the existing service locations, phasing of the development, Town infrastructure upgrades, and other factors. Given the general nature of the servicing review, the information provided is subject to refinement at a detail design stage. As development proceeds, the servicing requirements will be reviewed and revised as necessary.

In addition to the above, the Utility Master Plan has been prepared based on information available and the preliminary level of design done to this point. For example, the Town of Canmore is currently preparing an update the Town of Canmore Sanitary Sewer Master Plan. Given that the final version of this report is not available at this time, the actual timing, location, or size of the trunk sewer through Spring Creek Mountain Village has not been confirmed at this time. As such, further detail is required at a later stage to finalize the sanitary sewer design.

2.0 Water Distribution System

2.1 Existing Water System

The existing water network is shown on Exhibit 2.1.1. It consists of a series of private pumps pumping water from the groundwater table into a private network. As much as possible, this system will remain intact for areas that continue to service the manufactured homes. However, given the proposed phasing, some areas may require interim servicing connections. For example, if a pump is removed because an area is being redeveloped, and manufactured homes still require servicing, interim connections may be required. Because this existing system was never designed to withstand average pressures expected in the Town pressurized watermain, to provide interim servicing may require a temporary pressure reducing valve, if connecting to a Town main. Otherwise, connection to another pump may be required for some existing units.

Pumphouse No. 1, located near the main CPR crossing at Railway Avenue, primarily acts to service the existing developments to the east of Restwell Trailer Park. From it, a 450mm line branches east towards Bow Valley Trail to feed the Benchlands reservoir. This line operates at high pressures necessary to deliver the water to the elevated reservoir. A second branch passes through the north end of Restwell Trailer Park where it currently acts to service 2 existing fire hydrants onsite. This branch is pressure reduced to bring the pressure down to an acceptable servicing pressure for the hydrants.

Because the private water system is incapable of providing adequate fire flow pressures, a 200mm watermain was also installed to service a series of 6 fire hydrants at the south end of the property. This 200mm line enters the south end of the site from Willow Pointe across Spring Creek. It too will remain operational in the early stages of development to ensure proper fire safety to the residents who will continue to reside onsite through the redevelopment process.

An existing 200mm watermain crosses the entrance to the site on Main Street and a 150mm connection exists at the intersection of 5th Avenue towards Restwell Trailer Park. This watermain currently provides water service for a few existing lots on 5th Avenue and 3rd Avenue, however, it does not enter Restwell Trailer Park.

2.2 Proposed Water Network

The proposed water system involves tying into Town owned infrastructure at four locations: the 150mm diameter line on 3rd Avenue, the 450mm diameter line running through the site between Pump house #1 and 4th Street, the 200mm watermain on Bow Valley Trail, and the 200mm diameter line at the south end of the site entering from Willow Pointe. Existing water pressures at these locations were provided to us by EPCOR for peak hour and peak day plus fire flow conditions, based on their model. The values of the total head at these locations are summarized in Table 2.2.1 and shown in Exhibit 2.2.1.

Hotel Demands -

Average Day Demand=

600 l/unit/day

Peak Day Demand =

2.5 x Average Day Demand

Peak Hour Demand =

2 x Average Day Demand

Note: The commercial demands are based on water demands used in the past. This demand is actually referenced in Alberta Environment's, *Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems* for design of sewage infrastructure. The *Water System Utility Master Plan* indicates that for one storey redevelopment in the downtown area, a demand of 0.23 l/s/ha is appropriate. For 2 stories, the demand is 0.58 l/s/ha. Given that most of the commercial development in SCMV is expected to be on the lower floor of a building, the value of 0.46 l/s/ha is conservative.

2.3.2. Minimum and Maximum Residual Water Pressure

Minimum pressure of 275 kPa (40 psi or 28.0m) and maximum of 620 kPa (90 psi or 63.3m) in the peak hour analysis was considered acceptable. A minimum pressure of 140 kPa (20 psi or 14.3m) at the simulated node and a maximum of 620 kPa with no negative pressures in the system was considered acceptable in the peak day plus fire flow simulation.

2.3.3 Fire Flows

For single family residential areas (R1), a fire flow of 83 l/s was used. For higher density residential areas a fire flow of 120 l/s was used. For the hotel and commercial areas a fire flow of 200 l/s was used.

2.3.4 Hydraulic Losses

We have used a C value (the roughness coefficient in the Hazen-Williams equation) of 140.

2.4 Methodology

The distribution network was modeled using the program EPANET Version 2.0, which is distributed by the United States Environmental Protection Agency. The following simulations were run:

1. Phase 1&2

- a) Peak Hour Demand
- b) Peak Day Demand + 200 l/s fire flow at node 1
- c) Peak Day Demand + 120 l/s residential fire flow at node 7
- d) Peak Day Demand + 120 l/s residential fire flow at node 9A
- e) Peak Day Demand + 83 l/s residential fire flow at node 14

2. Ultimate

- a) Peak Hour Demand
- b) Peak Day Demand + 200 I/s fire flow at node 1
- c) Peak Day Demand + 120 l/s residential fire flow at node 7
- d) Peak Day Demand + 120 I/s fire flow at node 16

3. Ultimate (Removing Pipe #16)

- a) Peak Hour Demand
- b) Peak Day Demand + 120 l/s fire flow at node 16

The residential fire locations were selected by noting which areas had lowest pressure in the Peak Hour analysis. Dead end cul-de-sacs and areas where the size of the watermain was reduced to 150mm are typically the location of a worst case fire flows. Higher value property such as the commercial developments was also fire flow simulated. Copies of the actual simulations are located in Appendix 2-A.

2.5 Discussion of Results

The following is a summary of each simulation modeled outlined in Section 2.4. It includes a description of the network and the results obtained. Please note that the maximum and minimum residual pressures shown are taken from within the Spring Creek Mountain Village boundaries.

2.5.1 Phases 1 & 2

The Phases 1 & 2 network was modeled as shown previously on Exhibit 2.2.2. The pipe and node information is shown in Tables 2.5.1.1 and 2.5.1.2. A 200mm watermain is required to connect from the existing 150mm watermain on 3rd Avenue to the 450mm watermain. The remainder of the watermain is also 200mm in diameter except for the 150mm pipe on the eastern loop. The results of the analysis are summarized as follows:

a) Peak Hour Demand		
Lowest Pressure (Node 6)	=	41.28m (404.96 kPa)
Highest Pressure (Node 14)	=	53.82m (527.97 kPa)
b)Peak Day Demand + Fire Flow at Noc	le 1	` ,
Lowest Pressure (Node 1)	=	15.52m (152.25 kPa)
Highest Pressure (Node 14)	=	52.30m (513.06 kPa)
c)Peak Day Demand + Fire Flow at Nod	e 7	,
Lowest Pressure (Node 7)	=	26.11m (256.14 kPa)
Highest Pressure (Node 14)	=	52.30m (513.06 kPa)
d)Peak Day Demand + Fire Flow at Noc	le 9A	` '
Lowest Pressure (Node 9A)	=	28.39m (278.51 kPa)
Highest Pressure (Node 14)	=	52.30m (513.06 kPa)
e)Peak Day Demand + Fire Flow at Nod	le 14	,
Lowest Pressure (Node 14)	=	14.92m (146.37 kPa)
•		

_
↽
÷
ιή
R
ш
Ļ
窗
⋖
F

WATER NETWORK ANALYSIS											
IER NETWORK AN		CAPITA:				SINGLE FAMILY RESIDENTI	LY RESIDENT		83 l/s	AVE DEMAN	460 l/c/day
	4LYSIS	RES. APARTMENTS (R.	ENTS (RA)	2.2	2.2 PPU	MULTI FAMIL	MULTI FAMILY RESIDENTIA		120 l/s	PDF	2.5 *ADD
		TOWN HOUSE (RTH)	(RTH)	2.2	2.2 PPU	COMMERCIAL/HOTEL	UHOTEL	200 l/s	l/s	PHF	5 *ADD
PROJECT: 123-02-01	<u>ت</u> د	SENIOR RESIDENCE (SR)	DENCE (SR)	2.2	2.2 PPU					COTEL (DED LINE).	Ė
SPRING CREEK MOUNLAIN VILLAGE STAGES 1 & 2	Z	SINGLE FAMILY (SF)	(<u>%</u>) \	3.0	2	AVE DEMAND	L(FER 114): 0.46 l/s	s/i		AVE DEMAN	600 l/dav
						PDF		2.5 *ADD		PDF	2.5 *ADD
NODE DATA						PHF	Ω.	5 *ADD		PHF	5 *ADD
NODE CATCHMENT	- N		DENSITY		AVERAGE DAY	PEAK DAY	PEAK HOUR		PEAK DAY	EI EVATION	
		OF UNITS	PER UNIT	POPULATION	(NS)	(1/s)	(8/1)	(8/1)	(Vs)		
	I	20			0.347	0.868	1.736				
	I	30			0.208	0.521	1.042				
0.39	ပ	4		0	0.179	0.449	0.897				
1 0.3	ပ			OI	0.138	0.345	0.690				
		80		•	0.873	2.182	4.365	200	202.182	1309.50	
0.7	ပ			0	0.322	0.805	1.610				
	I	120			0.833	2.083	4.167				
	SR	63	2.2	139	0.738	1.845	3.690				
	¥	46	2.2	힏	0.539	1.347	2.694				
		229		240	2.432	6.080	12.160	500	206.080	1309.60	
	RT	9	2.2	13	0.070	0.176	0.351				
	RTH	LO1	2.2	티	0.059	0.146	0.293				
		=		75	0.129	0.322	0.644	120	120.322	1308.00	
	Æ	56	2.2	123	0.656	1.640	3.280				
	SR	58	2.2	128	0.679	1.698	3.397				
	≱	28	2.2	128	0.679	1.698	3.397				
		172		378	2.015	5.037	10.073	120	125.037	1309.65	
	RTH	=	2.2	24	0.129	0.322	0.644				
	RTH	4	2.2	띪	0.164	0.410	0.820				
7(Total)		22		55	0.293	0.732	1.464	120	120.732	1307.60	
	RTH	တ	2.2	5	0.070	0.176	0.351				
	RTH	ഗി	2.2	뒤	0.059	0.146	0.293				
9A(Total)		÷		73	0.129	0.322	0.64	120	120.322	1308.00	
(Total)	SF	7	3.0	73	0.112	0.280	0.559	83	83.280	1307.45	
TOTALS		528		743	5.982	14.955	29.910				
		!		I I		1					

MINIMUM PRESSURE = 275 kPa (40psi) FOR PEAK HOUR DEMANDS (28.03m) MINIMUM PRESSURE = 140 kPa (20psi) FOR PEAK DAY + FIRE FLOW DEMANDS (14.27m)

WATER NETWORK ANALYSIS TABLE 2.5.1.2

PROJECT # 123-02-01 SPRING CREEK MOUNTAIN VILLAGE

PIPE DATA

NODE <u>From</u>	<u>TO</u>	LENGTH (m)	SIZE (mm)	ROUGHNESS COEFFICIENT
R1	1	205	150	140
1	2	395	200	140
R2	2	1	450	140
2	3	75	450	140
3	4	80	450	140
3	5	50	200	140
2	6	100	200	140
6	7	130	150	140
7	8	130	150	140
6	8	100	200	140
5	9A	95	200	140
13	14	150	150	140
R4	13	170	150	140
	R1 1 R2 2 3 3 2 6 7 6 5	FROM TO R1 1 1 2 R2 2 2 3 3 4 3 5 2 6 6 7 7 8 6 8 5 9A 13 14	FROM TO (m) R1 1 205 1 2 395 R2 2 1 2 3 75 3 4 80 3 5 50 2 6 100 6 7 130 7 8 130 6 8 100 5 9A 95 13 14 150	FROM TO (m) (mm) R1 1 205 150 1 2 395 200 R2 2 1 450 2 3 75 450 3 4 80 450 3 5 50 200 2 6 100 200 6 7 130 150 7 8 130 150 6 8 100 200 5 9A 95 200 13 14 150 150

Highest Pressure (Node 7) = 41.38m (405.94 kPa)

2.5.2 Ultimate Development

The ultimate development for Spring Creek Mountain Village was modeled as shown earlier on Exhibit 2.2.3. The pipe and node information is shown in Tables 2.5.2.1 and 2.5.2.2. The water network for the remainder of Spring Creek Mountain Village primarily consists of 200mm watermains except for the southeast loop, which will be 150mm. In addition, connections to the existing 450mm with the existing 150mm watermain on 3rd Avenue and 4th Street is required, a connection with the existing 200mm watermain at Willow Pointe is required, as well as a connection to the 150mm watermain from Bow Valley Trail, constructed during Phase 1. The results of the analysis are summarized on the following page:

```
a) Peak Hour Demand
      Lowest Pressure (Node 6)
                                               41.23m (404.47 kPa)
      Highest Pressure (Node 14)
                                               48.61m (476.86 kPa)
b)Peak Day Demand + Fire Flow at Node 1
      Lowest Pressure (Node 1)
                                               15.52m (152.25 kPa)
      Highest Pressure (Node 14)
                                               47.02m (461.27 kPa)
c)Peak Day Demand + Fire Flow at Node 7
      Lowest Pressure (Node 7)
                                        =
                                               30.72m (301.36 kPa)
      Highest Pressure (Node 14)
                                               46.45m (455.67 kPa)
d)Peak Day Demand + Fire Flow at Node 16
      Lowest Pressure (Node 16)
                                               27.20m (266.83 kPa)
      Highest Pressure (Node 14)
                                               45.44m (445.77 kPa)
                                        =
```

An analysis was also done to ensure the ultimate development is still serviceable if the main feed on Spring Creek Drive is shut off due to breakage or other circumstances. The simulation assumes that the eastern half of the loop from the 450mm watermain is shut down to the southern portion of the site due to a breakage in pipe 16. Only the worst cases based on previous simulations are shown here. Pressures were found to be slightly lower in this simulation, but are all still within the acceptable limits. The results are as indicated as follows:

```
a) Peak Hour Demand
Lowest Pressure (Node 6) = 41.19m (404.07 kPa)
Highest Pressure (Node 14) = 48.98m (480.49 kPa)
b)Peak Day Demand + Fire Flow at Node 16
Lowest Préssure (Node 16) = 21.80m (213.86 kPa)
Highest Pressure (Node 14) = 41.90m (411.04 kPa)
```

_	
•	
Ç	
١	
¢	
L	L
=	
Ĺ	ĺ
4	ď
٠	7

Company Comp	TABLE 2.5.2.1	5.2.1						FIRE FLOW DEMANDS:	EMANDS:			RESIDENTIAL DEMANDS:	DEMANDS:
ANNIONING Commercial Commerci				CAPITA:		,		SINGLE FAMI	LY RESIDENT		s/	AVE DEMAN	460 Vc/day
SINGIL FAMILY (SF) 2.0 PDU ANT DEMANL	WATER	NETWORK AN	ALYSIS	RES. APARTMI TOWN HOUSE	ENTS (RA) (RTH)	2.2	PPU PPU	MULTI FAMIL COMMERCIAL	Y RESIDENIIA JHOTEL		/s	Į.	5 *ADD
Number Part	AP CNIGGS	COJECT: 123-02-	5 Z	SENIOR RESID	DENCE (SR) V (SE)	3.0	ndd Ndd	COMMERCIAL	L(PER HA):			HOTEL(PER U	Ë
OATO E DATA CATCHINGE CATCHINGE CATCHINGE CATCHINGE CATCHINGE CHIRAL CHARAC FEAK DAY FEAK DAY FEAK DAY FEAK DAY FEAK DAY FEAK THON FEAK THON FEAK THON FEAK THON FEAK THON FEAK THON CHARAC PEAK THON FEAK THON	VILLAGE	ULTIMATE CON	DITION			})	AVE DEMAND		l/s *ADD		AVE DEMANI	600 I/day 2.5 *ADD
AMERICAL INTITY OFNSITY AVERAGE DAY LINE PEAK HOLD PIGNARD DELAND D		NODE DATA						표	, ro	*ADD		H.	5 *ADD
 H 50 O 30 C O 30 C	NODE NO.	CATCHMENT AREA (Ha)	LAND	NUMBER OF UNITS	DENSITY (PERSONS PER UNIT)	POPULATION	AVERAGE DAY DEMAND (<u>[\s]</u>	PEAK DAY DEMAND (<u>[\s</u>]	PEAK HOUR DEMAND (<u>[/s]</u>	FIRE FLOW (US)	PEAK DAY + FIRE FLOW (<u>US)</u>		
0.39 C C	ļ ,		_ =	20			0.347	0.868	1.736				
0.30 C C			: Ι				0.208	0.521	1.042				
0.30 C 80 0.138 0.138 0.689 20.0690 20.248 0.689 20.01 20.248 20.0690 20.248 20.0690 20.248 1.610 20.248 20.0690 20.248 20.0690 20.248 20.0690 20.248 20.0690 20.0480 20.0690 20.0480	· -	0.39	ပ			0	0.179	0.449	0.897				
070 C 80 0 0.8873 2.085 1.610 2.02.102 1 H 120 0 0.383 2.083 1.610 2.080 0.1610 2.080 0.1610 2.080 0.1610 2.080 0.1610 2.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.080 0.1610 0.08	-	0:30	ပ			OI (0.138	0.345	0.690	ő	400	0007	
0.70 C	1(Total)	í	(&		•	0.873	2.182	4.565	200	202 .182	1303.30	
RTH 120 22 134 0.539 1.347 2.694 206 306 RTH 22 101 0.539 6.080 12.845 3.690 206.080 RTH 12 2.2 240 2.351 6.080 12.160 20.0 20.0 RTH 12 2.2 2.6 0.141 0.281 0.59 12.0 0.00 1.00 0.00	Ν (0.70	ပ :	9		0	0.322	0.800	1.010				
RTH 46 2.2 101 6.539 1.347 2.694 200 20	7 (c 0	07 <u>1</u>	22	130	0.738	1.845	3.690				
National Science Color C	N 6		S A	84	2.2	5	0.539	1.347	2.694				
RTH 10 2.2 2.2 0.117 0.293 0.69 RTH 12 2.2 48 0.241 0.244 120 SR 56 2.2 123 0.656 1.640 3.280 120 SR 58 2.2 128 0.656 1.640 3.280 120 120.644 RA 58 2.2 128 0.659 1.70 3.40 120.644 120.	2(Total)		<u> </u>	1 2	1	25	2.432	6.080	12.160	200	206.080	1309.60	
RTH 12 2.2 26 0.141 0.351 0.00 SR 56 2.2 128 0.644 1.286 1.286 1.286 SR 58 2.2 128 0.679 1.70 3.40 1.00 4 RA 58 2.2 128 0.679 1.70 3.40 1.00 73 RTH 17 2.2 2.4 0.129 0.322 0.644 120 125.037 RTH 1.1 2.2 2.4 0.129 0.322 0.644 120 125.037 RTH 1.1 2.2 1.41 0.164 0.416 0.322 0.644 120 125.037 RTH 1.0 2.2 1.41 0.750 1.874 3.748 120 120.332 RTH 1.0 2.2 1.41 0.750 1.874 3.748 120 120.332 RTH 3 2.2 1.44 3.748 0.18 1.1874 1.464 <th>5</th> <td></td> <td>RTH</td> <td>10</td> <td>2.2</td> <td>22</td> <td>0.117</td> <td>0.293</td> <td>0.59</td> <td></td> <td></td> <td></td> <td></td>	5		RTH	10	2.2	22	0.117	0.293	0.59				
RA 56 2.2 123 0.656 1.640 3.280 SR 58 2.2 128 0.679 1.70 3.40 RTH 172 2.2 128 0.679 1.70 3.40 RTH 11 2.2 24 0.129 0.679 1.70 3.40 RTH 114 2.2 31 0.164 0.410 0.632 0.644 RTH 114 2.2 31 0.164 0.410 0.322 0.644 RTH 124 2.2 141 0.760 1.874 3.748 120 120.732 RTH 10 2.2 141 0.750 1.874 3.748 120 120.732 RTH 3 2.2 2 0.017 0.293 0.056 0.176 0.176 0.176 0.176 0.176 0.176 0.176 1.218.4 RA 16 2.2 2 0.035 0.035 0.076 <t< td=""><th>5 (17042))</th><td></td><td>RTH</td><td>3 [2]</td><td>2.2</td><td>S) 3</td><td>0.141</td><td>0.351</td><td>0.70</td><td>120</td><td>120.644</td><td>1309,65</td><td></td></t<>	5 (17042))		RTH	3 [2]	2.2	S) 3	0.141	0.351	0.70	120	120.644	1309,65	
SR 58 22 128 0.679 1.70 3.40 RA 58 22 128 0.679 1.70 3.40 RTH 172 22 128 0.679 1.70 3.40 RTH 11 2.2 2.1 2.015 6.032 0.644 120 125.037 ACH 12 2.2 3.4 0.129 0.203 0.649 120 125.037 125.0	(Glall)		V C	1 %	22	123	0.656	1.640	3.280	Ì			
RA 58 2.2 128 0.679 1.70 3.40 120 125.037 10073 120 125.037 RTH 11 2.2 24 0.164 0.419 0.644 120 125.037 10073 120 125.037 120 125.044 120 125.044 120 125.044 120	- 40		8 8 8	, ry	2.2	128	0.679	1.70	3.40				
RTH 112 378 2.015 5.037 10.073 120 125.037 RTH 11 2.2 24 0.129 0.322 0.644 120 125.037 1464 120 125.037 1464 120 120.332 1664 120.732 1464 0.6293 0.654 120 120.732 1464 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.732 120 120.742 120.742 120.742 120.742 120.742 120.742 120.746	မှ			: 8SI	2.2	128	0.679	1.70	3.40	;			
RTH 11 2.2 2.4 0.129 0.522 0.644 RTH 14 2.2 31 0.159 0.732 0.644 120 120.732 A 64 2.2 141 0.750 1.874 3.748 120 120.732 RTH 10 2.2 141 0.750 1.874 3.748 120 120.732 RTH 10 2.2 2.2 141 0.750 1.874 3.748 120 120.732 RTH 10 2.2 2.2 0.17 0.293 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 120.469 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.759 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 0.756 <th>6(Total)</th> <td></td> <td>į</td> <td>172</td> <td></td> <td>378</td> <td>2.015</td> <td>5.037</td> <td>10.073</td> <td>120</td> <td>125.037</td> <td>1309.65</td> <td></td>	6(Total)		į	172		378	2.015	5.037	10.073	120	125.037	1309.65	
RTH 14 2.2 31 0.104 0.410 0.620 <th>_</th> <td></td> <td>TT </td> <td>Ξ:</td> <td>2.2</td> <td>24</td> <td>0.129</td> <td>0.322</td> <td>0.644</td> <td></td> <td></td> <td></td> <td></td>	_		TT	Ξ:	2.2	24	0.129	0.322	0.644				
RA 64 2.2 141 0.750 1.874 3.748 120 12.874 RTH 10 2.2 141 0.750 1.874 3.748 120 12.1874 RTH 10 2.2 2.2 141 0.756 0.035 0.088 0.176 120 12.1874 RTH 3 2.2 7 0.035 0.088 0.176 0.937 120 120.469 RTH 350 2.2 3 0.176 0.439 0.788 120 120.469 0.94 C 360 0.432 1.081 2.162 2.07.897 2.162 2.07.897 RTH 3 2.2 7 0.035 0.088 0.176 2.162 2.0644 RTH 11 2.2 24 0.129 0.322 0.644 0.176 0.322 0.644 RTH 11 2.2 24 0.164 0.410 0.820 0.20 120.410	7 7/Total)		RTH	14 25	2.2	%	0.293	0.732	0.820 1.464	120	120.732	1307.60	
RTH 10 2.2 141 0.750 1.874 3.748 120 12.1874 RTH 10 2.2 2 0.17 0.035 0.086 0.176 0.176 RTH 3 2.2 7 0.035 0.088 0.176 0.176 RTH 3 2.2 7 0.035 0.088 0.176 120.469 RA 15 2.2 33 0.176 0.937 120 120.469 H 350 2.2 33 0.176 0.978 12.163 C 365 0 0.432 1.081 2.162 200 207.597 RTH 3 2.2 7 0.035 0.086 0.176 207.597 RTH 11 2.2 24 0.129 0.264 120.410 RTH 11 2.2 24 0.129 0.249 0.176 SR 7 2.2 24 0.164 0.410	8		\$	8 8	2.2	141	0.750	1.874	3.748	ţ	į	4	
National Part	8(Total)		į	3 \$	5 .7	. 5	0.750	1.874	3.748	120	121.874	1303.50	
National Paris National Paris Na	ဘာင		¥ 0	2 ~	2.2	77	0.035	0.233	0.176				
RA 15 2.2 35 0.187 0.469 0.937 120 120.469 H 350 2.2 33 0.176 0.439 0.878 12.163 H 350 2.23 3.33 0.176 0.232 1.081 2.162 RTH 3 2.2 7 0.035 0.088 0.176 RTH 11 2.2 24 0.129 0.322 0.644 RTH 11 2.2 24 0.129 0.322 0.644 RTH 11 2.2 24 0.164 0.410 0.820 120 120.410 SR 75 2.2 165 0.387 2.196 4.392 120 122.196 SF 7 3.0 21 0.12 0.280 0.559 83 83.280	no		Z Z	s er	2.5		0.035	0.088	0.176				
RA 15 2.2 33 0.176 0.439 0.878 H 350 2.431 6.076 12.153 RTH 365 2.2 7 0.035 0.088 0.176 RTH 11 2.2 24 0.129 0.322 0.644 RTH 11 2.2 24 0.129 0.322 0.644 RTH 14 2.2 24 0.164 0.410 0.876 120.410 SR 75 2.2 165 0.387 2.196 4.392 120 122.196 SF 7 3.0 21 0.112 0.280 0.559 83 83.280	9(Total)		:	ı 2	i i	35	0.187	0.469	0.937	120	120.469	1307.60	
H 350 2.431 6.076 12.153 0.94 C 365 0 0.432 1.081 2.162 RTH 3 2.2 7 0.035 0.088 0.176 RTH 11 2.2 24 0.129 0.322 0.644 RTH 14 3 2.2 165 0.164 0.410 0.820 120 SR 75 2.2 165 0.184 0.710 0.280 120 SF 7 3.0 21 0.112 0.280 0.559 83 83.280	10		æ	15	2.2	33	0.176	0.439	0.878				
0.94 C 365 0 0.432 0.432 0.432 1.081 0.432 0.452 2.162 0.008 0.156 2.162 0.008 0.176 2.0.39 0.008 0.176 2.0.39 0.008 0.176 2.0.49 0.129 0.322 0.644 2.0.410 0.820 0.820 0.820 0.820 120.410 0.410 0.820 0.820 SR 75 2.2 165 0.129 0.878 0.859 83 83.280 83.280	0		I	350			2.431	6.076	12.153				
RTH 3 2.2 7 0.035 0.088 0.176 RTH 11 2.2 24 0.129 0.322 0.644 14 31 0.164 0.410 0.820 120 120.410 SR 75 2.2 165 0.878 2.196 4.392 120 122.196 SF 7 3.0 21 0.112 0.280 0.559 83 83.280	10 40/Total	0.94	ပ	36.5		ol c	<u>0.432</u> 3.039	1.087 7.59	2.16 <u>2</u> 15.193	200	207.597	1309.40	
RTH 11 2.2 24 0.129 0.322 0.644 14 31 0.164 0.410 0.820 120 120.410 SR 75 2.2 165 0.878 2.196 4.392 120 122.196 SF 7 3.0 21 0.112 0.280 0.559 83 83.280	10(10 <u>(al</u>)		RTH	} ო	2.2	,	0.035	0.088	0.176				
14 31 0.164 0.410 0.820 120 120.410 12			RTH	1	2.2	<u>24</u>	0.129	0.322	0.644				
SR 75 2.2 165 0.878 2.196 4.392 120 122.196 'SF 7 3.0 21 0.112 0.280 0.559 83 83.280 '	11(Total)			 ‡		3	0.164	0.410	0.820	120	120.410	1308.20	
SF 7 3.0 21 0.112 0.280 0.559 83 83.280 ·	12(Total)		S	75	2.2	165	0.878	2.196	4.392	120	122.196	1309.55	
	14(Total)		Ŗ	7	3.0	7	0.112	0.280	0.559	89	83.280	1307.45	

		2 1309.15				3 1306.85							3 1308.00					3 1307.80		
		125.212				120.908							127.233					122.196	83.319	
		120				120							120					120	8	
4.568	5.856	10.425	0.586	0.527	0.703	1.816	3.924	5.212	2.460	1.933	0.703	0.234	14.466	3.397	0.527	0.234	0.234	4.392	0.639	86.098
2.284	2.928	5.212	0.293	0.264	0.351	0.908	1.962	2.606	1.230	996.0	0.351	0.117	7.233	1.698	0.264	0.117	0.117	2.196	0.319	43.049
0.914	1.171	2.085	0.117	0.105	0.141	0.363	0.785	1.042	0.492	0.387	0.141	0.047	2.893	0.679	0.105	0.047	0.047	0.878	0.128	17.220
172	220	392	22	20	8 1	68	147	196	92	7.3	56	თ	543	128	20	6	മി	165	72	2283
2.2	2.2		2.2	2.2	2.2		2.2	2.2	2.2	2.2	2.2	2.2		2.2	2.2	2.2	2.2		3.0	
78	힘	178	10	6	감	8	29	88	42	33	12	41	247	28	6	4	4	75	60	1600
æ	≨		RTH	RTH	RTH		æ	æ	\$	ž	RTH	RTH		SR	RTH	RTH	RTH		SF	UDE NODE 20
15	15	15(Total)	16	16	16	16(Total)	17	17	17	17	17	17	17(Total)	18	18	18	18	18(Total)	20(Total)	TOTALS NOTE: TOTALS EXCLUDE NODE 20

MINIMUM PRESSURE = 275 kPa (40psi) FOR PEAK HOUR DEMANDS (28.03m)
MINIMUM PRESSURE = 140 kPa (20psi) FOR PEAK DAY + FIRE FLOW DEMANDS (14.27m)

WATER NETWORK ANALYSIS TABLE 2.5.2.2

PROJECT # 123-02-01 SPRING CREEK MOUNTAIN VILLAGE

PIPE DATA

PIPE NO.	NODE FROM	<u>TO</u>	LENGTH (m)	SIZE (mm)	ROUGHNESS COEFFICIENT
1	R1	1	205	150	140
2	1	2	395	200	140
3	R2	2	1	450	140
4	2	3	75	450	140
5	3	4	80	450	140
6	3	5	50	200	140
7	2	6	100	200	140
9	6	7	130	150	140
10	7	8	130	150	140
11	6	8	100	200	140
12	8	10	80	200	140
13	5	9	170	200	140
14	9	10	65	200	140
15	9	11	55	200	140
16	10	12	100	200	140
17	12	13	140	200	140
18	13	14	150	150	140
19	12	15	90	200	140
21	15	16	140	150	140
22	16	17	145	150	140
23	15	17	165	200	140
24	17	18	280	200	140
27	11	19	95	200	140
28	19	20	200	200	140
29	4	20	375	150	110
30	R4	13	170	150	140

2.6 Conclusions

Phase 1 of the Spring Creek Mountain Village redevelopment includes looping the watermain between the 150mm watermain on 3rd Avenue at the entrance to the current Restwell development and the two tie-ins into the 450mm line running through the north end of the site. It also includes connection of the R1 lots to the existing 200mm watermain on Bow Valley Trail with a 150mm watermain. Under the proposed conditions, the analysis shows that the residual pressures in Phases 1 & 2 are acceptable during normal operation.

The ultimate development consists of extending the existing water system from Phases 1 & 2 to the final tie-in into the 200mm line from Willow Pointe currently operating to service the existing fire hydrants. It also consists of connecting the 450mm watermain to the existing watermain in South Canmore. The analysis for this scenario shows that the residual pressures for the ultimate development are sufficient during normal operation. In the event of a shut down or breakage disrupting the 200mm main loop through the site, residual pressures are also acceptable.

As indicated in Section 2.2, existing water pressures were supplied to us by EPCOR. These pressures take into account the existing PRV at Pump House #1. As indicated above, the residual pressures are adequate at ground level for all simulations. Reviewing the pressures 10m above the ground surface, at approximately the highest floor level proposed in SCMV, the residual pressures are still within the acceptable limits. However, they are at the low end of acceptable. Consideration should be given to increasing the water pressure from the existing PRV. This would also result in an increase in level of service for South Canmore, when the connection from the 450mm watermain to South Canmore is made.

3.0 Sanitary Sewer System

3.1 Existing Sanitary Sewer System

The existing sanitary sewer system for Restwell Trailer Park is shown on Exhibit 3.1.1. It consists of a series of private lift stations which pump to a common forcemain that eventually collects into a 100mm forcemain. This forcemain discharges into the Town of Canmore sewer infrastructure at a manhole at the intersection of 4th Avenue and 4th Street.

In addition to the private sewer system that exists in Restwell, a triple forcemain is located within the site. This triple forcemain services all development on the north side of the Trans Canada Highway as well as development on Bow Valley Trail. It travels through Restwell in a Utility Right-of-Way near the north end of the site.

Exhibit 3.1.1 shows the existing sanitary sewer system.

3.2 Proposed Sanitary Sewer Network

In determining the proposed sanitary sewer servicing for the proposed Spring Creek Mountain Village (SCMV) development, a review of the 1998 Utility Master Plan for Sanitary Sewer was done. Based on this review, discussions were held with the Town of Canmore's Engineering Department to determine if the redevelopment could benefit both the Town with future upgrades that are required and SCMV to service the site. It was determined that a future forcemain could be installed from Bow Valley Trail, through SCMV, across Spring Creek to 3rd Avenue and eventually to the sewage treatment plant. This forcemain will service the catchment now serviced by the triple forcemain and SCMV.

The servicing of SCMV will be phased. Because the new forcemain will likely not be constructed before Phase 1&2 of SCMV is constructed, a temporary connection to either the triple forcemain or the existing 200mm forcemain currently servicing Restwell is proposed. This proposal is shown on Exhibit 3.2.1, as a connection to the triple forcemain. This connection will be used to service all development for Phases 1 & 2. Each development pod will require a lift station that will pump into the forcemain and ultimately into the Town's sewer system. A forcemain and lift station analysis, as well as a capacity analysis of the existing Town sewers will be required in conjunction with detail design for the Phase 1 development.

For the ultimate development, the new Town forcemain will likely be installed through SCMV. Exhibit 3.2.2 shows the proposed sanitary sewer system. Given that the proposed forcemain will be located near the center of the development, two connections will be made to it. One connection will be for development south of the forcemain and the other from the north. The temporary connection installed in Phase 1 will either be converted to a permanent connection or the connection will be removed and extended to the new forcemain. Wherever the Town determines that capacity exists will be the location for the connection. As with the Phase 1 and 2 developments, lift stations will be required for each pod of development, as schematically indicated on Exhibit 3.2.1. In addition, as with the initial phases of development, a pressure analysis will be required to identify the required lift station specifications and forcemain sizing.

Exhibits 3.2.1 and 3.2.2 show schematic locations for lift stations within the proposed development. These lift stations are expected to be private installations that will likely be operated and maintained by individual condominium associations. Consideration will be given to connecting multiple buildings to a single lift station. This will potentially require an agreement between different condominium associations and will be reviewed during a detail design stage.

4.0 Storm Water Management System

4.1 Existing Storm Water Management System

The existing Restwell Trailer Park generally drains from north to south. Its stormwater management system consists primarily of surface drainage flowing directly into Spring Creek to the west and Policeman's Creek to the east. In addition, a number of drywells exist to infiltrate stormwater into the groundwater.

Current stormwater installations incorporate Alberta Environment and Town of Canmore guidelines regarding stormwater treatment into the design. This usually means oil & grit separator manholes treating the stormwater runoff prior to dispersion. The existing system operating in Spring Creek Mountain Village was never designed to meet these guidelines, and will be phased out as the redevelopment progresses.

4.2 Proposed Stormwater Management Network

In conjunction with the redevelopment and the creation of Spring Creek Mountain Village (SCMV), regrading will be done. This regrading will consider a number of factors including the groundwater elevations, locations for underground parking, roof heights on the proposed buildings, and other issues. Generally, the center of the site will be at the highest elevation. Roads and buildings adjacent to creeks will be lower. Final road grades will be determined at a detail design, however, they will generally follow the directions indicated on Exhibit 4.2.1.

Given the proposed land use and density of the development, area for a formal stormwater management facility is not available. The intention of the road grading is to create required areas for stormwater storage. These areas will mostly be at the parking areas near the creeks. Other localized ponding areas will be required where longer lengths of road are proposed. The manner of stormwater management will be to provide the required storage for the 1:100 Year storm, while infiltrating the water into the ground. There will be a balance between the quantity of infiltration infrastructure proposed and the quantity of storage provided. Depending on the results of that analysis, underground storage, in the form of pipes or other specific stormwater storage/infiltration facilities will be proposed. At a detail design stage, this will be studied in more detail to determine the most cost effective method of stormwater control.

In addition to controlling the quantity of runoff, treatment of the runoff from the roadways will be required to ensure that the quality of the groundwater is not impacted. Treatment will most likely be done using oil/grit separators. These are facilities, similar to a manhole, which removes oils and sediment. These are the most common method of stormwater treatment in the South Canmore area.

The above sections deal with storm drainage from road areas. Exhibit 4.2.1 shows the proposed catchment boundaries, as well as the road drainage directions. The hatched areas represent areas that also require stormwater management, however they will not require treatment. This is because these catchments will consist of roofs and green spaces. The runoff from these types of areas will not be contaminated, as is runoff from a road surface. Currently, the Area Redevelopment Plan is not contemplating any surface parking in any of the

development pods. However, if surface parking were provided in any of the development sites, stormwater treatment would be required on those areas. Also, runoff from the hatched areas will not be permitted to drain onto the road surfaces. The individual development pods will be required to discharge the 1:100 Year storm within their site. A determination of whether surface or underground storage will be required will be made at a detail design stage when the building designs and landscaping plans are finalized.

Given the proposed road grading, runoff will drain towards the creeks bordering the site. The proposed stormwater management system involves creating approximately fifteen trapped lows primarily at the intersections of the mews roads and the cross streets to collect, store and disperse the runoff from the 1:100 year storm event. At these locations, surface ponding will occur while the infrastructure works to disperse the runoff into the ground. The location of these trapped lows is designed in such a way that if a storm event greater than the 1:100 year storm occurs, an emergency overflow will be provided into either Spring Creek or Policeman's Creek.

Given the actual and proposed grading of the site and surrounding area, the proposed storm sewer infrastructure will operate independently of any existing infrastructure operating in the immediate vicinity of the site. This means that surface overflow from surrounding developments is not expected to drain onto the proposed site. Nor will drainage from SCMV drain offsite during the 1:100 Year storm.

4.3 Methodology

The proposed catchments were modeled using the program SWMHYMO Version 4.02, Stormwater Hydraulic Model. Only roadway catchments were modeled as each private development site will be responsible for their own discharges into the groundwater. The catchments were all modeled using the same parameters, with the exception of Catchment 111. Catchment 111 is unique when compared to the others being the only catchment containing single family residential units. As a result, conditions in this catchment cannot be generalized with those from the other fourteen catchments. Detailed modeling results are located in Appendix 4-A.

All catchments were modeled with the City of Calgary 1:100 Year design storm, as per current Town requirements. However, it is our understanding that a Town of Canmore design storm is currently being investigated. If this design storm has been approved by the Town of Canmore prior to detail design being performed on the SCMV site, the new storm will be used during detail design.

With the exception of Catchment 111, the remaining fourteen of the fifteen catchments were modeled using the CALIB STANDHYD command using a value of imperviousness of 85% (XIMP=TIMP=0.85). Such a high value was selected as representative of the primarily road surface nature of the catchments. With the exception of the townhouse units, catchment boundaries were drawn on building property lines, resulting in catchment areas ranging from 0.28ha to 0.91ha. In other words and as indicated previously, all of the apartment buildings, hotels and commercial buildings will be required to capture, store, treat and release runoff generated on their property during a 1:100 year rainfall even within their property. The road

catchments that include townhouses with driveways were sized to include the front half of the units.

Only Catchment 111 was modeled with an imperviousness of 55, and the CALIB STANDHYD command. This value was selected because the catchment is made up of single family residential units.

As indicated in Section 4.2, the proposed infrastructure will be determined at a detail design phase. The proposed infrastructure will consider the total cost and will likely create a balance between surface and underground storage. In determining the quantity of storage required, an infiltration rate of the soils is required. Sabatini Earth Technologies Inc. performed infiltration testing in the existing piezometers in February, 2003. They recommended an infiltration rate of 1x10⁻⁴ m/s be used for design purposes. This is the rate that was used in this analysis, as it is believed to be conservative. However, more detailed geotechnical analysis will be required at the detail building design phase. If additional infiltration testing is done at that time that indicates a faster infiltration rate, those values will be used for the detail design.

4.4 Discussion of Results

Table 4.4.1 provides a summary of the anticipated runoff generated on the road areas. The chart provides a summary of the 1:100 year discharge, the total volume of runoff generated by the catchment, and the total storage required, based on a 100m² area and a 200m² area of infiltration.

Catchment	100 Year	Total Volume	Storage Volume	Storage Volume
	Q (m³/s)	Runoff (m³)	(100m ² infiltration)(m ³)	(200m ² infiltration)(m ³)
100	0.159	140	120	97
101	0.147	128	108	85
102	0.121	98	79	58
103	0.106	83	62	46
104	0.138	113	94	72
105	0.146	119	100	77
106	0.197	154	136	113
107	0.169	140	121	97
108	0.149	128	109	86
109	0.110	89	69	50
110	0.097	80	59	43
111	0.185	200	175	156
112	0.137	113	94	72
113	0.146	122	103	80
114	0.155	137	117	94
115	0.158	140	120	97

Table 4.4.1 SWMHYMO Results

5.0 Conclusions

The following conclusions can be drawn from the above analysis:

- 1. A range of required storage volumes to deal with stormwater on the road areas has been provided. A cost analysis at the detail design stage will be required to determine if surface ponding, underground storage, or a combination will be used.
- 2. Treatment of runoff is required for road drainage. Treatment of runoff is not required for roof or landscaped areas.
- 3. Unless further investigation dictates otherwise, a design infiltration rate of 1x10⁻⁴ m/s is recommended for design of infiltration facilities.
- 4. The City of Calgary 1:100 Year design storm was used in this analysis. If the Town of Canmore 1:100 Year storm is approved prior to detail design, the Town of Canmore storm will be used for detail design.

Input File: PH STAGE 1.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
11	6.	8.	100	200
9	6.	7.	130	150
10	7.	8.	130	150
1	Rl	1.	205	. 150
3	R2	2.	1	450
2	1.	2.	395	200
4	2.	3.	75	450
6	3.	5.	50	200
13	5.	9A.	170	200
18	13	14	150	150
30	13	R4	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	Head m	Pressure m	Quality	
1. 2. 6. 8. 9A. 7. 5. 3. 13 14 R1 R2 R4	4.36 12.16 10.07 0.00 0.64 1.46 0.64 0.00 0.00 0.56 -1.75 -27.60 -0.56	1350.98 1351.00 1350.93 1350.93 1351.00 1351.00 1351.00 1361.27 1361.27 1351.00 1351.00	41.48 42.35 41.28 41.43 43.00 43.32 43.00 43.00 52.82 53.82 0.00 0.00	0.00	Reservoir Reservoir Reservoir

Link Results at 0:00 Hrs:

Link ID	Flow LPS	Ve]	locityUnit m/s	Headloss m/km	Status
7	11.54		0.37	0.74	Open
11	0.70		0.02	0.00	Open
9	0.77		0.04	0.02	Open
10	-0.70	4	0.04	0.02	Open
1	1.75		0.10	0.09	Open
3	27.60		0.17	0.00	Open
2	-2.61		0.08	0.05	Open
4	1.29		0.01	0.00	Open
6	1.29		0.04	0.01	Open
1.3	0.64		0.02	0.00	Open
1.8	0.56		0.03	0.01	Open
30	-0.56		0.03	0.01	Open

Input File: PD+FF ST 1 NODE 1.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
11	6.	8.	100	200
9	6.	7.	130	150
10	7.	8.	130	150
1	R1	1.	205	150
3	R2	2.	1	450
2	1.	2.	395	200
4	2.	3.	75	450
6	3.	5.	50	200
13	5.	9A.	170	200
18	13	14	150	150
30	13	R4	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	Head m	Pressure m	Quality	
1.	202.18	1325.02	15.52	0.00	-
2. 6.	6.08 5.08	1349.00 1348.98	40.35 39.33	0.00 0.00	
8. 9A.	0.00 0.32	1348.98 1349.00	39.48 41.00	0.00	
7. 5.	0.73	1348.98	41.38	0.00	
3.	0.32 0.00	1349.00 1349.00	41.00 41.00	0.00 0.00	
13 14	0.00 0.28	1359.75 1359.75	51.30 52.30	0.00	
R1 R2	-77.54	1346.00	0.00	0.00	Reservoir
R4	-137.17 -0.28	1349.00 1359,75	0.00 0.00		Reservoir Reservoir

Link Results at 0:00 Hrs:

					
Link ID	Flow LPS	Ve]	locityUnit m/s	Headloss m/km	Status
7 11 9 10 1	5.81 0.35 0.38 -0.35 77.54 137.17		0.18 0.01 0.02 0.02 4.39 0.86	0.21 0.00 0.01 0.00 102.35 1.34	Open Open Open Open Open Open
2 4 6 13 18 30	-124.64 0.64 0.64 0.32 0.28 -0.28		3.97 0.00 0.02 0.01 0.02 0.02	60.71 0.00 0.01 0.00 0.00 0.00	Open Open Open Open Open Open

Input File: PD+FF ST 1 NODE 7.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
11	6.	8.	100	200
9	6.	7.	130	150
10	7.	8.	130	150
1	R1	1.	205	150
3	R2	2.	1	450
2	1.	2.	395	200
4	2.	3.	75	450
6	3.	5.	50	200
13	5.	9A.	170	. 200
18	13	14	150	150
30	13	R4	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	Head m	Pressure m	Quality	
1. 2. 6. 8. 9A. 7. 5. 3. 13 14 R1 R2 R4	2.18 6.08 5.08 0.00 0.32 120.73 0.32 0.00 0.00 0.28 21.27 -155.98	1347.91 1349.00 1342.82 1341.37 1349.00 1333.71 1349.00 1359.75 1359.75 1349.00 1349.00 1359.75	38.41 40.35 33.17 31.87 41.00 26.11 41.00 41.00 51.30 52.30 0.00 0.00	0.00	Reservoir Reservoir Reservoir

Link Results at 0:00 Hrs:

				- 	
Link ID	Flow LPS	Vel	ocityUnit m/s	Headloss m/km	Status
7	125.81		4.00	61.77	Open
11 9	57.54 63.19	4	1.83 3.58	14.51 70.06	Open Open
10	-57.54 -21.27		3.26	58.90	Open
3	155.98		1.20 0.98	9.32 1.79	Open Open
2	-23.45		0.75	2.75	Open
4 6	0.64 0.64		0.00 0.02	0.00 0.00	Open Open
13	0.32		0.01	0.00	Open
18 30	0.28 -0.28		0.02 0.02	0.00	Open Open
	U . 20		V • V 4	0.00	OPCII

Input File: PD+FF ST 1 NODE 9A.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
11	6.	8.	100	200
9	6.	7.	130	150
10	7.	8.	130	150
1	R1	1.	205	150
3	R2	2.	1	450
2	1.	2.	395	200
4	2.	3.	75	450
6	3.	5.	50	200
13	5 <i>.</i>	9A.	170	200
18	13	1.4	150	150
30	13	R4	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	Head m	Pressure m	Quality	
1. 2. 6. 8. 9A. 7. 5. 3. 13 14 R1 R2 R4	2.18 6.08 5.08 0.00 120.32 0.73 0.32 0.00 0.00 0.28 21.27 -155.98 -0.28	1347.91 1349.00 1348.98 1348.98 1346.39 1346.06 1348.92 1359.75 1359.75 1346.00 1349.00 1359.75	38.41 40.35 39.33 39.48 28.39 41.38 38.06 40.92 51.30 52.30 0.00 0.00	0.00	Reservoir Reservoir Reservoir

Link Results at 0:00 Hrs:

			~~ 		
Link	Flow	Vel		Headloss	Status
ID	LPS		m/s	m/km	
7	5.81		0.18	0.21	Open
11					-
	0.35		0.01	0.00	Open
9	0.38	4	0.02	0.01	Open
10	-0.35		0.02	0.00	Open
1	-21.27		1.20	9.32	Open
3	155.98		0.98	1.79	Open
2	-23.45		0.75	2.75	Open
4	120.64		0.76	1.10	Open
6	120.64		3.84	57.15	Open
13	120.32		3.83	56.87	Open
18	0.28		0.02	0.00	Open
30	-0.28		0.02	0.00	Open

Input File: PD+FF ST 1 NODE 14.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
11	6.	8.	100	200
9	6.	7.	130	150
10	7.	8.	130	150
1	R1	1.	205	150
3	R2	2.	1	450
2	1.	2.	395	200
4	2.	3.	75	450
6	3.	5.	50	200
13	5.	9A.	170	200
18	13	14	150	150
30	13	R4	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	Head m	Pressure m	Quality	
1. 2. 6. 8. 9A. 7. 5. 3. 13 14 R1 R2 R4	2.18 6.08 5.04 0.00 0.32 0.73 0.32 0.00 0.00 83.28 21.28 -35.95 -83.28	1347.91 1348.98 1348.98 1349.00 1348.98 1349.00 1349.00 1349.00 1339.89 1322.37 1346.00 1349.00	38.41 40.35 39.33 39.48 41.00 41.38 41.00 31.44 14.92 0.00 0.00	0.00	Reservoir Reservoir Reservoir

Link Results at 0:00 Hrs:

	 -				
Link ID	Flow LPS	Vel	ocityUnit m/s	Headloss m/km	Status
7 11 9 10 1 3 2 4 6	5.77 0.35 0.38 -0.35 -21.28 35.95 -23.46 0.64 0.64	4	0.18 0.01 0.02 0.02 1.20 0.23 0.75 0.00 0.02	0.21 0.00 0.00 0.00 9.33 0.15 2.75 0.00 0.00	Open Open Open Open Open Open Open Open
18 30	83.28 -83.28			116.82 116.82	Open Open

Page 1	·-·	003 12:19:38 AM
*******	*********	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
********	***************	********

Input File: PH ULTIMATE.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
15	9.	11.	55	200
11	6.	8.	100	200
12	8.	10.	80	200
16.	10.	12.	100	200
19	12.	15.	90	200
24	18.	17.	280	200
23	15.	17.	165	200
9	6.	7.	130	150
10	7.	8.	130	150
1 3	R1	1.	205	150
	R2	2.	1	450
29	4.	20.	375	150
21	15.	16.	140	150
22	16.	17.	145	150
2	1.	2.	395	200
18	13.	14.	150	150
4	2.	3.	75	450
5 6	3.	4.	80	450
	3.	5.	50	200
13	5.	9.	170	200
14	9.	10.	65	200
27	11.	18.	95	200
28	20.	18.	200	200
30	R4	13.	170	150
17	12.	13.	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS		Pressure m	Quality	
1.	4.36	1350.98	41.48	0.00	
2.	12.16	1351.00	42.35	0.00	
6.	10.07	1350.88	41.23		
8.	3.75	1350.87	41.37	0.00	
10.	15.19	1350.87	41.47	0.00	
9.	0.94	1350.87	43.27	0.00	
12.	4.39	1350.99	41.44	0.00	
15.	10.43	4 1350.79	41.64	0.00	
18.	4.39	1350.81	43.01	0.00	
14.	0.56	1356.06	48.61	0.00	
17.	14.47	1350.74	42.75	0.00	
11.	0.82	1350.84	42.64	0.00	
7.	1.46	1350.87	43.27	0.00	
4.	0.00	1351.00	42.00	0.00	
20.	0.64	1350.82	43.07	0.00	
16.	1.82	1350.75	43.90	0.00	
13.	0.00	1356.06	47.61	0.00	
5.	1.29	1350.96	42.96	0.00	
3.	0.00	1351.00	43.00	0.00	
R1	-1.75	1351.00	0.00	0.00	Reservoir
R2	-44.56	1351.00	0.00	0.00	Reservoir
R4	-40.43	1361.27	0.00		Reservoir

Link Results at 0:00 Hrs:

Link ID	Flow LPS	VelocityUnit m/s	Headloss m/km	Status
7	15.21	0.48	1.24	Open
15	8.65	0.28	0.43	Open
11	3.65	0.12	0.09	Open
12	-0.07	0.00	0.00	Open
16.	-14.92	0.47	1.19	Open
19	20.56	0.65	2.16	Open
24	6.15	0.20	0.23	Open
23	6.94	0.22	0.29	Open
9	1.49	0.08	0.07	Open
10	0.02	0.00	0.00	Open
1	1.75	0.10	0.09	Open
3	44.56	0.28	0.15	Open
29	3.35	0.19	0.48	Open
21	3.20	0.18	0.28	Open
22	1.38	0.08	0.06	Open
2	-2.61	0.08	0.05	Open
18	0.56	0.03	0.01	Open
4	14.57	0.09	0.02	Open
4 5	3.35	0.02	0.00	Open
6	11.22	0.36	0.70	Open
13	9.94	0.32	0.56	Open
14	0.35	0.01	0.00	Open
27	7.83	0.25	0.36	Open
28	2.71	0.09	0.05	Open
30	40.43	2.29	30.63	Open
17	-39.87	2.26	29.86	Open

Page 1		003 12:21:14 AM
*******	***********	******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
الكرابية الكرابية الكرابية الكرابية الكرابية الكرابية والمرابية والمرابية والمرابية		

Input File: PD+FF ULT NODE 1.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
15	9.	11.	55	200
11	6.	8.	100	200
12	8.	10.	80	200
16.	10.	12.	100	200
19	12.	15.	90	200
24	18.	17.	280	200
23	15.	17.	165	200
9	6.	7.	130	150
10	7.	8.	130	150
1 3	R1	1.	205	150
3	R2	2.	1	450
29	4.	20.	375	150
21	15.	16.	140	1.50
22	16.	17.	145	150
2	1.	2.	395	200
18	13.	14.	150	150
4	2.	3.	75	450
5 6	3.	4.	80	450
	3.	5.	50	200
13	5.	9.	170	200
14	9.	10.	65	200
27	11.	18.	95	200
28	20.	18.	200	200
30	R4	13.	170	150
17	12.	13.	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	Head m	Pressure m	Quality	
1.	202.18	1325.02	15.52	0.00	
2.	6.08		40.35	0.00	
6.	5.04	1349.00	39.35	0,00	
8.	1.87	1349.01	39.51	0.00	
10.	7.60	1349.04	39.64	0.00	
9.	0.47	1349.03	41.43	0.00	
12.	2.20	1349.27	39.72	0.00	
15.	5.21	4 1349.13	39.98	0.00	
18.	2.20	1349.03	41.23	0.00	
14.	0.28	1354.47	47.02	0.00	
17.	7.23	1349.06	41.06	0.00	
11.	0.41	1349.03	40.83	0.00	
7.	0.73	1349.00	41.40	0.00	
4.	0.00	1349.00	40.00	0.00	
20.	0.32	1349.03	41.28	0.00	
16.	0.91	1349.08	42.23	0.00	
13.	0.00	1354.47	46.02	0.00	
5.	0.64	1349.00	41.00	0.00	
3.	0.00	1349.00	41.00	0.00	
R1	-77.54	1346.00	0.00	0.00	Reservoir
R2	-125.12	1349.00	0.00	0.00	Reservoir
R4	-40.71	1359.75	0.00	0.00	Reservoir

Link Results at 0:00 Hrs:

Link ID	Flow LPS	VelocityUni m/s		Status	
7	-0.28	0.01	0.00	Open	
15	0.27	0.01	0.00	Open	
11	-4.48	0.14	0.13	Open	
12	-7.93	0.25	0.37	Open	
16.	-21.03	0.67	2.25	Open	
19	17.21	0.55	1.55	Open	
24	-3.85	0.12	0.10	Open	
23	8.57	0.27	0.43	Open	
9	-0.84	0.05	0.02	Open	
10	-1.57	0.09	0.08	Open	
1	77.54	4.39	102.35	Open	
3	125.12	0.79	1.19	Open	
29	-1.20	0.07	0.07	Open	
21	3.43	0.19	0.32	Open	
22	2.52	0.14	0.18	Open	
2	-124.64	3.97	60.71	Open	
18	0.28	0.02	0.00	Open	
4	-5.32	0.03	0.00	Open	
5	-1.20	0.01	0.00	Open	
6	-4.12	0.13	0.11	Open	
1.3	-4.77	0.15	0.14	Open	
14	-5.50		0.19	Open	
27	-0.14	0.00	0.00	Open	
28	-1.52		0.02	Open	
30	40.71	2.30	31.03	Open	
17	-40.43	2.29	30.64	Open	

Page 1	12	/1/2003 12:20:30 AM
*******	*********	*******
*	EPANET	*
*	Hydraulic and Water Quality	*
*	Analysis for Pipe Networks	*
*	Version 2.0	*
advalent from the first transfer of the first		

Input File: PD+FF ULT NODE 7.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
15	9.	11.	55	200
1.1	6.	8.	100	200
12	8.	10.	80	200
16.	10.	12.	100	200
19	12.	15.	90	200
24	18.	17.	280	200
23	15.	17.	165	200
9	6. 7.	7.	130	150
10	7.	8.	130	150
1	R1	1.	205	150
3	R2	2.	1	450
29	4.	20.	375	150
21	15.	16.	140	150
22	16.	17.	145	150
2	1.	2.	395	200
18	13.	14.	150	150
4 5	2.	3.	75	450
5	3.	4.	80	450
6	3.	5.	50	200
13	5.	9.	170	200
14	9.	10.	65	200
27	11.	18.	95	200
28	20.	18.	200	200
30	R4	13.	170	150
17	12.	13.	170	150

Node Results at 0:00 Hrs:

Node ID		Head m	Pressure m	Quality	
1. 2. 6. 8. 10. 9. 12. 15. 18. 14. 17. 11. 7. 4. 20.	2.18 6.08 5.04 1.87 7.60 0.47 2.20 5.21 2.20 0.28 7.23 0.41 120.73 0.00 0.32 0.91	1347.91 1349.00 1346.71 1346.67 1347.70 1348.03 1348.05 1348.05 1348.04 1353.90 1348.03 1348.03 1348.03 1348.03	38.41 40.35 37.06 37.17 38.30 40.43 38.57 38.90 40.24 46.45 40.03 39.83 30.72 39.99 40.36 41.19	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
13. 5.	0.00 0.64		40.76	0.00	
3. R1 R2	0.00 21.27 -141.59		40.99 0.00 0.00	0.00	Reservoir Reservoir
R4	-43.05	1359.75	0.00		Reservoir

Link ID	Flow LPS	VelocityUnit m/s	Headloss m/km	Status
7	73.60	2.34	22.88	Open
15	-3.01	0.10	0.06	Open
11	8.12	0.26	0.39	Open
12	-54.04	1.72	12.92	Open
16.	-29,20	0.93	4.13	Open
19	11.37	0.36	0.72	Open
24	1.98	0.06	0.03	Open
23	4.27	0.14	0.12	Open
9	60.44	3.42	64.52	Open
10	-60.29	3.41	64.22	Open
1	-21.27	1.20	9.32	Open
3	141.59	0.89	1.49	Open
29	7.92	0.45	2.34	Open
21	1.89	0.11	0.11	Open
22	0.98	0.06	0.03	Open
2	-23.45	0.75	2.75	Open
18	0.28	0.02	0.00	Open
4	38.46	0.24	0.13	Open
5	7.92	0.05	0.01	Open
6	30.53	0.97	4.49	Open
13	29.89	0.95	4.31	Open
14	32.44	1.03	5.02	Open
27	-3.42	0.11	0.08	Open
28	7.60	0.24	0.34	Open
30	43.05	2.44	34.42	Open
17	-42.77	2.42	34.00	Open

Input File: PD+FF ULT NODE 16.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
15	9.	11.	55	200
11	6.	8.	100	200
12	8.	10.	80	200
16.	10.	12.	100	200
19	12.	15.	90	200
24	18.	17.	280	200
23	15.	17.	165	200
9	6.	7.	130	150
10	7.	8.	130	150
1 3	R1	1.	205	150
	R2	2.	1	450
29	4.	20.	375	150
21	15.	16.	140	150
22	16.	17.	145	150
2	1.	2.	395	200
18	13.	14.	150	150
4	2.	3.	75	450
5	3.	4.	80	450
6	3.	5.	50	200
13	5.	9.	170	200
14	9.	10.	65	200
27	11.	18.	95	200
28	20.	18.	200	200
30	R4	13,	170	150
17	13.	12.	170	150

Node Results at 0:00 Hrs:

Node	Demand	Head	Pressure	Ouality	
ID		m	m		
		. 			
1.	2.18	1347.91	38.41	0.00	
2.	6.08	1349.00	40.35	0.00	
6.	5,04	1347.98	38.33	0.00	
8.	1.87	1347.47	37.97	0.00	
10.		1346.88		0.00	
9.	0.47	1346.91	39.31	0.00	
12.	2.20	1346.11	36.56	0.00	
15.	5.21	1343.39	34.24	0.00	
18.	2.20 4	1346.00	38.20	0.00	
14.	0.28	1352.89	45.44	0.00	
17.	7.23	1343.10	35.10	0.00	
11.	0.41	1346.57	38.37	0.00	
7.	0.73	1347.71	40.11	0.00	
4.	0.00	1348.97	39.97	0.00	
20.	0.32	1346.22	38.47	0.00	
16.	120.91	1334.05	27.20	0.00	
13.	0.00	1352.89	44.44	0.00	
5.	0.64	1348.50	40.50	0.00	
3.	0.00	1348.98	40.98	0.00	
R1	21.27	1346.00	0.00	0.00	Reservoir
R2	-137.73	1349.00	0.00	0.00	Reservoir
R4	-46.91	1359.75	0.00	0.00	Reservoir

Link Results at 0:00 Hrs:

Link ID	Flow LPS	VelocityUnit m/s	Headloss m/km	Status
7	47.49	1.51	10.17	Open
15	36.20	1.15	6.15	Open
11	32.89	1.05	5.15	Open
12	39.85	1.27	7.35	Open
16.	40.95	1.30	7.73	Open
19	85.39	2.72	30.13	Open
24	47.96	1.53	10.35	Open
23	18.62	0.59	1.80	Open
9	9.57	0.54	2.13	Open
10	8.84	0.50	1.83	Open
1	-21.27	1.20	9.33	Open
3	137.73	0.87	1.34	Open
29	14.69	0.83	7.34	Open
21	61.55	3.48	66.73	Open
22	-59.36	3.36	62.39	Open
2	-23.45	0.75	2.75	Open
18	0.28	0.02	0.00	Open
4	60.70	0.38	0.31	Open
5 6	14.69	0.09	0.02	Open
6	46.01	1.46	9.59	Open
13	45.37	1.44	9.34	Open
14	8.70	0.28	0.44	Open
27	35.79	1.14	6.02	Open
28	14.37	0.46	1.11	Open
30	46.91	2.65	40.35	Open
17	46.63	2.64	39.91	Open

Input File: PH ULTIMATE NO PIPE 16.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter mm
7	2.	6.	100	200
15	9.	11.	55	200
11	6.	8.	100	200
12	8.	10.	80	200
19	12.	15.	90	200
24	18.	17.	280	200
23	15.	17.	165	200
9	6.	7.	130	150
10	7.	8.	130	150
1	R1	1.	205	150
1 3	R2	2.	1	450
29	4.	20.	375	150
21	15.	16.	140	150
22	16.	17.	145	150
2	1.	2,	395	200
18	13.	14.	150	150
4	2.	3.	75	450
5 6	3. 3.	4.	80	450
6	3.	5.	50	200
13	5.	9.	170	200
14	9.	10.	65	200
27	11.	18.	95	200
28	20.	18.	200	200
30	R4	13.	170	150
17	12.	13.	170	150

Node Results at 0:00 Hrs:

Node ID	Demand LPS	m	Pressure m	Quality	
1.	1 26	1350 00	41.48	0.00	
2.	12.16 10.07	1351.00	42.35	0.00	
6.	10.07	1350.84	41.19	0.00	
8.	3.75	1350.82	41.32	0.00	
10.	15.19	1350.81	41.41	0.00	
9.	0.94	1350.87	43.27	0.00	
12.	4.39	1351.71	42.16	0.00	
15.	10.43	1351.22	42.07	0.00	
18.	4.39	1350.89	43.09	0.00	
14.	0.56	1356.42	48.98	0.00	
17.	14.47 4	1350.98	42.98	0.00	
11.	0.82	1350.88	42.68	0.00	
7.	1.46	1350.82	43.22	0.00	
4.	0.00	1351.00	42.00	0.00	
20.	0.64	1350.89	43.14	0.00	
16.	1.82	1351.07	44.22	0.00	
13.	0.00	1356.43	47.98	0.00	
5.	1.29	1350.96	42.96	0.00	
3.	0.00	1351.00	43.00	0.00	
Rl	-1.75	1351.00	0.00	0.00	Reservoir
R2	-46.11	1351.00	0.00	0.00	Reservoir
R4	-38.87	1361.27	0.00	0.00	Reservoir

Link Results at 0:00 Hrs:

Link ID	Flow LPS	VelocityUnit m/s		Status
7	17.74	0.56	1.64	Open
15	-3.87	0.12	0.10	Open
11	5.54	0.18	0.19	Open
12	2.46	0.08	0.04	Open
19	33.92		5.45	Open
24	-7.22	0.23	0.31	Open
23	16.77	0.53	1.48	Open
9	2.13	0.12	0.13	Open
10	0.66		0.01	Open
1	1.75	0.10	0.09	Open
3	46.11	0.29	0.15	Open
29	2.50		0.28	Open
21	6.72	0.38	1.11	Open
22	4.91	0.28	0.62	Open
2	-2.61	0.08	0.05	Open
18	0.56	0.03	0.01	Open
4 5	13.59	0.09	0.02	Open
5	2.50	0.02	0.00	Open
6	11.09	0.35	0.69	Open
13	9.80	0.31	0.55	Open
14	12.73	0.41	0.89	Open
27	-4.69	0.15	0.14	Open
28	1.86 38.87	0.00		Open
30 17	-38.32	2.20 2.17	28.49 27.74	Open
1 f	-30.32	2.11	41.14	Open

Input File: PD+FF ULT NODE 16 NO PIPE 16.NET

Link - Node Table:

Link ID	Start Node	End Node	Length m	Diameter
7	2.	6.	100	200
15	9.	11.	55	200
11	6.	8.	100	200
12	8.	10.	80	200
19	12.	15.	90	200
24	18.	17.	280	200
23	15.	17.	165	200
9	6.	7.	130	150
10	7.	8.	130	150
1 3	R1	1.	205	150
	R2	2.	1	450
29	4.	20.	375	150
21	15.	16.	140	150
22	16.	17.	145	150
2	1.	2.	395	200
18	13.	14.	150	150
4	2.	3.	75	450
5 6	3.	4.	80	450
6	3.	5.	50	200
13	5.	9.	170	200
14	9.	10.	65	200
27	11.	18.	95	200
28	20.	18.	200	200
30	R4	13.	170	150
17	13.	12.	170	150

Node Results at 0:00 Hrs:

Node	Demand	Head	Pressure	Quality	
ID	LPS				
1.	2.18	1347.91	38.41	0.00	
2.	6.08	1349.00	40.35	0.00	
6.	5.04	1348.29	38.64	0.00	
8.	1.87	1347.95	38.45	0.00	
10.	7.60	1347.58	38.18	0.00	
9.	0.47	1347.39	39.79	0.00	
12.	2.20	1339.05	29.50	0.00	
15.	5.21	1337.80	28.65	0.00	
18.	2.20	1344.87	37.07	0.00	
14.	0.28	1349.35	41.90	0.00	
17.	7.23 👍	1337.89	29.89	0.00	
11.	0.41	1346.46	38.26	0.00	
7.	0.73	1348.11	40.51	0.00	
4.	0.00	1348.98	39.98	0.00	
20.	0.32	1345.18	37.43	0.00	
16.	120.91	1328.65	21.80	0.00	
13.	0.00	1349.35	40.90	0.00	
5.	0.64	1348.61	40.61	0.00	
3.	0.00	1348.98	40.98	0.00	
R1	21.27	1346.00	0.00	0.00	Reservoir
R2	-125.92	1349.00	0.00	0.00	Reservoir
R4	-58.72	1359.75	0.00	0.00	Reservoir

Link Results at 0:00 Hrs:

Link ID	Flow LPS	VelocityUnit m/s		Status
 7	39.00	1.24	7.06	Open
15	62.57	1.99	16.94	Open
11	26.25	0.84	3.39	Open
12	31.36	1.00	4.71	Open
19	56.24	1.79	13.91	Open
24	77.11	2.45	24.95	Open
23	-9.83	0.31	0.55	Open
9	7.71	0.44	1.42	Open
10	6.98	0.39	1.18	Open
1	-21.27	1.20	9.33	Open
3	125.92	0.79	1.19	Open
29	17.47	0.99	10.12	Open
21	60.87	3.44	65.36	Open
22	-60.04	3.40	63.73	Open
2	-23.45	0.75	2.75	Open
18	0.28	0.02	0.00	Open
4	57.39	0.36	0.28	Open
5	17.47	0.11	0.03	Open
6	39.92	1.27	7.37	Open
13	39.28	1.25	7.15	Open
14	-23.76	0.76	2.82	Open
27	62.16	1.98	16.74	Open
28	17.15	0.55	1.54	Open
30	58.72	3.32	61.16	Open
17	58.44	3.31	60.62	Open


```
StormWater Management HYdrologic Model
                                     999
                                          999 ======
****** A single event and continuous hydrologic simulation model *******
      based on the principles of HYMO and its successors
                OTTHYMO-83 and OTTHYMO-89.
****************
****** Distributed by: J.F. Sabourin and Associates Inc. ******
                 Ottawa, Ontario: (613) 727-5199
                 Gatineau, Quebec: (819) 243-6858
*****
                 E-Mail: swmhymo@jfsa.Com
************************
++++++ Licensed user: Mountain Engineering Ltd.
                Canmore
                               SERIAL#:3733817
******************
            ++++++ PROGRAM ARRAY DIMENSIONS ++++++
*****
****** OETAILED OUTPUT
    DATE: 2003-11-26 TIME: 00:29:41 RUN COUNTER: 000043
*************************
* Input filename: G:\MOUNTA~1\PROJEC~1\123RES~1\UTILIT~1\STORMM~1\Prelim*
* Output filename: G:\MOUNTA~1\PROJEC~1\123RES~1\UTILIT~1\STORMM~1\Prelim*
* Summary filename: G:\MOUNTA~1\PROJEC~1\123RES~1\UTILIT~1\STORMM~1\Prelim*
* User comments:
* 1:__
* 2:_
001:0001-----
* SPRING CREEK MOUNTAIN VILLAGE SWMHYMO
TZERO = .00 hrs on 0
METOUT= 2 (output = METRIC)
                      0
  NRUN = 001
  NSTORM= 1
# 1=
| CHICAGO STORM | IDF curve parameters: A= 663.100
                               B= 1.870
C= .712
! Ptotal= 35.15 mm |
                used in: C = .712
used in: INTENSITY = A / (t + B)^C
                Duration of storm = 1.00 \text{ hrs}
                Storm time step = 5.00 \text{ min}
                Time to peak ratio =
                                            hrs m
          TIME RAIN | hrs mm/hr | hrs mm/hr | hrs mm/hr | hrs mm/hr | .08 13.283 | .33 168.138 | .58 23.236 | .83 13.746
         TIME
          hrs
```

```
001:0003-----
* Catchment 100
*TOTALS*
                                                 .159 (iii)
                                                    .333
                                                 29.686
35.147
                                                  .845
     *** WARNING: Storage Coefficient is smaller than DT!
               Use a smaller DT or a larger area.
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
         THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
        001:0004-----
* NO INFILTRATION
| COMPUTE VOLUME |
| ID:01 (000100) |
                          DISCHARGE
                                       TIME
        START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .159
STOP CONTROLLING AT .000
                                       (hrs)
                                      .083
                                        .333
                                      1.654
         REQUIRED STORAGE VOLUME (ha.m.)= .0139
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0140
% OF HYDROGRAPH TO STORE = 99.7420
         NOTE: Storage was computed to reduce the Inflow
              peak to .000 (cms).
* 100m2 OF INFILTRATION AREA
-----
| COMPUTE VOLUME | ID:01 (000100) |
                   DISCHARGE
                                      TIME
        START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .159
STOP CONTROLLING AT .010
                                      (hrs)
                                      .083
                                         .333
         STOP CONTROLLING AT
                                      1.032
         REQUIRED STORAGE VOLUME (ha.m.) = .0120
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0140
         % OF HYDROGRAPH TO STORE = 86.0379
         NOTE: Storage was computed to reduce the Inflow
               peak to .010 (cms).
```

```
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
           000100) | DISCHARGE TIME

------ (cms) (hrs)

START CONTROLLING AT .000 .083

INFLOW HYD. PEAKS AT .159 .333

STOP CONTROLLING AT .020 .758
| ID:01 (000100) |
           REQUIRED STORAGE VOLUME (ha.m.) = .0097
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0140
           % OF HYDROGRAPH TO STORE = 69.2701
           NOTE: Storage was computed to reduce the Inflow
                   peak to .020 (cms).
* Catchment 101
PEAK FLOW (cms) = .15 .00 .147
TIME TO PEAK (hrs) = .33 .58 .333
RUNOFF VOLUME (mm) = .33.55 .7.81 .29.686
TOTAL RAINFALL (mm) = .35.15 .35.15 .35.147
RUNOFF COEFFICIENT = .95 .22 .845
*** WARNING: Storage Coefficient
                                                              *TOTALS*
                                                             .147 (iii)
                    Use a smaller DT or a larger area.
       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
      CN^* = 72.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
           THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0008-----
* NO INFILTRATION
______
| COMPUTE VOLUME |
                             DISCHARGE
| ID:01 (000101) |
                                  (cms)
                                                (hrs)
           START CONTROLLING AT
           INFLOW HYD. PEAKS AT
STOP CONTROLLING AT
                                     .147
                                                   .333
           STOP CONTROLLING AT
                                                1.633
           REQUIRED STORAGE VOLUME (ha.m.) = .0127
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0128
            % OF HYDROGRAPH TO STORE = 99.7222
           NOTE: Storage was computed to reduce the Inflow
                  peak to .000 (cms).
```

```
001:0009-----
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME
                       DISCHARGE
| ID:01 (000101) |
                                   TIME
        .083
                                    .333
        STOP CONTROLLING AT
                          .010
                                  1.024
        % OF HYDROGRAPH TO STORE = 84.8008
        NOTE: Storage was computed to reduce the Inflow
            peak to .010 (cms).
001:0010-----
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                 DISCHARGE
| ID:01 (000101) |
                                   TIME
        REQUIRED STORAGE VOLUME (ha.m.)= .0085
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0128
        % OF HYDROGRAPH TO STORE = 66.7650
        NOTE: Storage was computed to reduce the Inflow
                     .020 (cms).
             peak to
* Catchment 102
PEAK FLOW (cms) = .12 .00 .121

TIME TO PEAK (hrs) = .33 .50 .333

RUNOFF VOLUME (mm) = .33.55 .7.81 .29.686

TOTAL RAINFALL (mm) = .35.15 .35.15 .35.147

RUNOFF COEFFICIENT = .95 .22 .845
                                            *TOTALS*
                                           .121 (iii)
    *** WARNING: Storage Coefficient is smaller than DT!
              Use a smaller DT or a larger area.
     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
    CN* = 72.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
        THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

1:0012-----

```
* NO INFILTRATION
 | COMPUTE VOLUME |
 | ID:01 (000102) |
                                                                                         DISCHARGE
                                                                                                                                                                      TIME
                                                                                                                       (cms)
.000
                                                                                                                                                                  (hrs)
                                                                                                                                                                  .083
                                     START CONTROLLING AT
                                                                                                                             .121
                                     INFLOW HYD. PEAKS AT STOP CONTROLLING AT
                                                                                                                                                                            .333
                                      STOP CONTROLLING AT
                                                                                                                              .000
                                                                                                                                                                  1.378
                                      REQUIRED STORAGE VOLUME (ha.m.) = .0098
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0098
                                        % OF HYDROGRAPH TO STORE = 99.7084
                                      NOTE: Storage was computed to reduce the Inflow
                                                                                                      .000 (cms).
                                                               peak to
 001:0013-----
 * 100m2 OF INFILTRATION AREA
 _____
 | COMPUTE VOLUME |
                                                                                                                                                           11.
(hrs)
083
 | ID:01 (000102) |
                                                                                DISCHARGE
                                                                                                                                                                     TIME
                                     START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .121
STOP CONTROLLING AT .010
                                                                                                                                                                  .083
                                                                                                                                                                         .333
                                                                                                                                                                         .966
                                      REQUIRED STORAGE VOLUME (ha.m.) = .0079
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0098
                                        % OF HYDROGRAPH TO STORE = 80.3695
                                       NOTE: Storage was computed to reduce the Inflow
                                                               peak to .010 (cms).
                              001:0014----
 * 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME | | ID:01 (000102) |
                                     DISCHARGE TIME (cms) (hrs)
START CONTROLLING AT .000 .083
INFLOW HYD. PEAKS AT .121 .333
STOP CONTROLLING AT .020
REQUIRED STORAGE TOTAL BUTTORAGE TOTAL BUTTO
                                       REQUIRED STORAGE VOLUME (ha.m.) = .0058
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0098
                                        % OF HYDROGRAPH TO STORE = 59.2744
                                        NOTE: Storage was computed to reduce the Inflow
                                                                peak to .020 (cms).
 * Catchment 103
_____
                PERVIOUS (i)
                Max.eff.Inten.(mm/hr) = 000 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10
```

TOTALS

```
      PEAK FLOW (cms)=
      .11
      .00
      .106 (iii)

      TIME TO PEAK (hrs)=
      .33
      .50
      .333

      RUNOFF VOLUME (mm)=
      33.55
      7.81
      29.686

      TOTAL RAINFALL (mm)=
      35.15
      35.15
      35.147

      RUNOFF COEFFICIENT =
      .95
      .22
      .845

       *** WARNING: Storage Coefficient is smaller than DT!
                       Use a smaller DT or a larger area.
        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
       CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
             THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
* NO INFILTRATION
| COMPUTE VOLUME | | ID:01 (000103) |
| COMPUTE VOLUME
                                  DISCHARGE
                                                           TIME
             START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .106
STOP CONTROLLING AT .000
                                                         (hrs)
                                                         083
                                                            .333
                                                         1.310
             REQUIRED STORAGE VOLUME (ha.m.) = .0083
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0083
             % OF HYDROGRAPH TO STORE = 99.6803
             NOTE: Storage was computed to reduce the Inflow
                      peak to .000 (cms).
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
             | ID:01 (000103) |
             REQUIRED STORAGE VOLUME (ha.m.)= .0063
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0083
              % OF HYDROGRAPH TO STORE = 75.3157
             NOTE: Storage was computed to reduce the Inflow
                                    .010 (cms).
001:0018-----
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
             START CONTROLLING AT .000 .083
INFLOW HYD. PEAKS AT .106 .333
STOP CONTROLLING AT .020 .549
REQUIRED STOP2CT
| ID:01 (000103) |
             REQUIRED STORAGE VOLUME (ha.m.)= .0046
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0083
              % OF HYDROGRAPH TO STORE = 54.9186
              NOTE: Storage was computed to reduce the Inflow
                      peak to .020 (cms).
001:0019-----
* Catchment 104
```

```
PEAK FLOW (cms) = .14 .00 .138
TIME TO PEAK (hrs) = .33 .50 .333
RUNOFF VOLUME (mm) = .33.55 .7.81 .29.686
TOTAL RAINFALL (mm) = .35.15 .35.15 .35.147
RUNOFF COEFFICIENT = .95 .22 .845
                                                                                                                                *TOTALS*
                                                                                                                               .138 (iii)
              *** WARNING: Storage Coefficient is smaller than DT!
                                          Use a smaller DT or a larger area.
                (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
              CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                        THAN THE STORAGE COEFFICIENT.
            (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 001:0020-----
 * NO INFILTRATION
 | COMPUTE VOLUME |
                                                       DISCHARGE
 | ID:01 (000104) |
                                                                                                      TIME
                        START CONTROLLING AT .000
                                                                                                    (hrs)
                        START CONTROLLING AT .000 .083
INFLOW HYD. PEAKS AT .138 .333
STOP CONTROLLING AT .000 1.390
                                                                                                          .333
                        REQUIRED STORAGE VOLUME (ha.m.)= .0113
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0113
                         % OF HYDROGRAPH TO STORE = 99.7460
                         NOTE: Storage was computed to reduce the Inflow
                                      peak to .000 (cms).
 * 100m2 OF INFILTRATION AREA
 | COMPUTE VOLUME |
 | ID:01 (000104) |
                        | DISCHARGE | TIME | Cms | (hrs) | (hrs) | | START CONTROLLING AT | .000 | .083 | .000 | .083 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000
                                                    DISCHARGE
                                                                                                         TIME
                         REQUIRED STORAGE VOLUME (ha.m.) = .0094
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0113
                         % OF HYDROGRAPH TO STORE
                                                                                           = 83,4053
                         NOTE: Storage was computed to reduce the Inflow
                                        peak to
                                                                .010 (cms).
 001:0022-----
  * 200m2 OF INFILTRATION AREA
 ______
  | COMPUTE VOLUME |
  | ID:01 (000104) |
                                                 DISCHARGE TIME
```

```
REQUIRED STORAGE VOLUME (ha.m.) = .0072
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0113
% OF HYDROGRAPH TO STORE = 63.6434
                         NOTE: Storage was computed to reduce the Inflow
                                         peak to .020 (cms).
* Catchment 105
_____
          **** WARNING: Storage Coefficient**

**TOTALS

**TOTALS

**TOTALS

**TOTALS

**TOTALS

**TOTALS

.00
.146
.00
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.333
.50
.
                                                                                                                                      *TOTALS*
                                                                                                                                    .146 (iii)
                                                                                                                                              .333
              *** WARNING: Storage Coefficient is smaller than DT!
                                          Use a smaller DT or a larger area.
                (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
              CN^* = 72.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                         THAN THE STORAGE COEFFICIENT.
            (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0024-----
* NO INFILTRATION
 | COMPUTE VOLUME |
                                                    DISCHARGE (cms)
                                                                                                     TIME
(hrs)
 | ID:01 (000105) |
                        REQUIRED STORAGE VOLUME (ha.m.)= .0118
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0119
                          % OF HYDROGRAPH TO STORE = 99.7538
                          NOTE: Storage was computed to reduce the Inflow
                                        peak to .000 (cms).
 001:0025-----
 * 100m2 OF INFILTRATION AREA
 | COMPUTE VOLUME |
 | ID:01 (000105) | DISCHARGE
                                                                             DISCHARGE TIME (cms) (hrs) .000 .083
                        START CONTROLLING AT
```

```
INFLOW HYD. PEAKS AT .146 .333
STOP CONTROLLING AT .010 1.014
                           % OF HYDROGRAPH TO STORE = 84.2720
                           NOTE: Storage was computed to reduce the Inflow
                                                                         .010 (cms).
                                            peak to
001:0026-----
* 200m2 OF INFILTRATION AREA
[ COMPUTE VOLUME |
| ID:01 (000105) |
                                                                              DISCHARGE
                          START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .146
STOP CONTROLLING AT .020
                                                                                                                   (hrs)
                                                                                                                  .083
                           REQUIRED STORAGE VOLUME (ha.m.) = .0077
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0119
% OF HYDROGRAPH TO STORE = 64.9165
                           NOTE: Storage was computed to reduce the Inflow
                                           peak to .020 (cms).
001:0027-----
* Catchment 106
Max.eff.Inten.(mm/hr) = 168.14 22.39

over (min) 5.00 10.00

Storage Coeff. (min) = 1.84 (ii) 8.64 (ii)

Unit Hyd. Tpeak (min) = 5.00 10.00

Unit Hyd. peak (cms) = .32 .12
                                                                                                                                                 *TOTALS*
           PEAK FLOW (cms) = .20 .00 .197
TIME TO PEAK (hrs) = .33 .50 .333
RUNOFF VOLUME (mm) = .33.55 .7.81 .29.686
TOTAL RAINFALL (mm) = .35.15 .35.15 .35.147
RUNOFF COEFFICIENT = .95 .22 .845
                                                                                                                                                  .197 (iii)
               *** WARNING: Storage Coefficient is smaller than DT!
                                              Use a smaller DT or a larger area.
                  (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                {\tt CN^{\star}=72.0~Ia=Dep.~Storage~(Above)} (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                            THAN THE STORAGE COEFFICIENT.
             (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
 001:0028-----
 * NO INFILTRATION
 | COMPUTE VOLUME |
                                                          DISCHARGE (cms)
                           | DISCHARGE | TIME | Coms | Co
 | ID:01 (000106)
```

.333

```
NOTE: Storage was computed to reduce the Inflow
                                                   peak to .000 (cms).
______
* 100m2 OF INFILTRATION AREA
------
| COMPUTE VOLUME |
                                                                            DISCHARGE
| ID:01 (000106) |
                                                                                                                                             TIME
                               REQUIRED STORAGE VOLUME (ha.m.)= .0136
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0154
% OF HYDROGRAPH TO STORE = 88.1107
                                NOTE: Storage was computed to reduce the Inflow
                                                     peak to .010 (cms).
001:0030-----
* 200m2 OF INFILTRATION AREA
------
| COMPUTE VOLUME |
| ID:01 (000106) |
                                                                                                                                   (hrs)
                                                                                                DISCHARGE
                                START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .197
STOP CONTROLLING AT .020
                                                                                                                                        .083
                                                                                                                                         .333
                                REQUIRED STORAGE VOLUME (ha.m.) = .0113
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0154
% OF HYDROGRAPH TO STORE = 73.2104
                                NOTE: Storage was computed to reduce the Inflow
                                                     peak to
                                                                                .020 (cms).
     Catchment 107
| CALIB STANDHYD | Area (ha)=
                                                                                                                                .47
| 01:000107 DT= 5.00 | Total Imp(%)= 85.00 Dir. Conn.(%)= 85.00
              Max.eff.Inten.(mm/hr)= 000 168.14 22.39 000 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0
                                                                                                                                                                              *TOTALS*

      PEAK FLOW (cms) =
      .17
      .00
      .169

      TIME TO PEAK (hrs) =
      .33
      .50
      .333

      RUNOFF VOLUME (mm) =
      33.55
      7.81
      29.686

      TOTAL RAINFALL (mm) =
      35.15
      35.15
      35.147

      RUNOFF COEFFICIENT =
      .95
      .22
      .845

                                                                                                                                                                               .169 (iii)
```

*** WARNING: Storage Coefficient is smaller than DT!

Use a smaller DT or a larger area.

REQUIRED STORAGE VOLUME (ha.m.) = .0154
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0154
% OF HYDROGRAPH TO STORE = 99.8115

```
(iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
* NO INFILTRATION
COMPUTE VOLUME
                                  | ID:01 (000107) |
                                  REQUIRED STORAGE VOLUME (ha.m.) = .0139
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0140
                                   % OF HYDROGRAPH TO STORE = 99.7630
                                   NOTE: Storage was computed to reduce the Inflow
                                                         peak to .000 (cms).
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                                  | DISCHARGE TIME | Coms | Coms
| ID:01 (000107) |
                                  REQUIRED STORAGE VOLUME (ha.m.) = .0121
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0140
                                   % OF HYDROGRAPH TO STORE = 86.4781
                                   NOTE: Storage was computed to reduce the Inflow
                                                         peak to .010 (cms).
     200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |

    VOLUME |

    000107) |
    DISCHARGE
    TIME

    000107) |
    (cms)
    (hrs)

    START CONTROLLING AT .000 .083

    INFLOW HYD. PEAKS AT .169 .333

    STOP CONTROLLING AT .020 .744

 | ID:01 (000107) |
                                   REQUIRED STORAGE VOLUME (ha.m.) = .0097
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0140
                                   % OF HYDROGRAPH TO STORE = 69.6627
                                   NOTE: Storage was computed to reduce the Inflow
                                                        peak to .020 (cms).
 * Catchment 108
 ! CALIB STANDHYD | Area (ha) = .43 | 01:000108 DT= 5.00 | Total Imp(%) = 85.00 Dir. Conn.(%) = 85.00
```

THAN THE STORAGE COEFFICIENT.

```
Length (m) = 185.00 12.00 Mannings n = .013 .250
     9.87 (ii)
                                                                    *TOTALS*

      PEAK FLOW (cms) =
      .15
      .00
      .149

      TIME TO PEAK (hrs) =
      .33
      .50
      .333

      RUNOFF VOLUME (mm) =
      33.55
      7.81
      29.686

      TOTAL RAINFALL (mm) =
      35.15
      35.15
      35.147

      RUNOFF COEFFICIENT =
      .95
      .22
      .845

                                                                     .149 (iii)
                                                                         .333
       *** WARNING: Storage Coefficient is smaller than DT!
                      Use a smaller DT or a larger area.
        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
       CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
            THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0036-----
* NO INFILTRATION
| COMPUTE VOLUME |
| ID:01 (000108) |
                                 DISCHARGE
                                                       TIME
            REQUIRED STORAGE VOLUME (ha.m.)= .0127
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0128
% OF HYDROGRAPH TO STORE = 99.7641
            NOTE: Storage was computed to reduce the Inflow
                     peak to .000 (cms).
         * 100m2 OF INFILTRATION AREA
------
| COMPUTE VOLUME |
                              DISCHARGE
| ID:01 (000108) |
            START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .149
STOP CONTROLLING AT .010
                                                     (hrs)
                                                     .083
                                                        .333
                                                       1.022
            REQUIRED STORAGE VOLUME (ha.m.) = .0109
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0128
                                               = 85.1933
             % OF HYDROGRAPH TO STORE
            NOTE: Storage was computed to reduce the Inflow peak to ^{4}.010 (cms).
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                           DISCHARGE
| ID:01 (000108) |
                                                      TIME
            START CONTROLLING AT .000
INFLOW HYD. PEAKS AT
                                                       (hrs)
                                                        .333
            STOP CONTROLLING AT
                                          .020
                                                        .711
            REQUIRED STORAGE VOLUME (ha.m.)= .0086
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0128
             % OF HYDROGRAPH TO STORE = 67.2379
```

NOTE: Storage was computed to reduce the Inflow peak to .020 (cms).

```
* Catchment 109
IMPERVIOUS PERVIOUS (i)
.25 .04
1.60 3.20
1.50 1.50
140.00 12.00
.013 .250
     Surface Area (ha) =
Dep. Storage (mm) =
Average Slope (%) =
Length (m) =
Mannings n =
     Mannings n
    9.05 (ii)
                                                              *TOTALS*
     PEAK FLOW (cms)= .11 .00 .110
TIME TO PEAK (hrs)= .33 .50 .333
RUNOFF VOLUME (mm)= 33.55 7.81 29.686
TOTAL RAINFALL (mm)= 35.15 35.15 35.147
RUNOFF COEFFICIENT = .95 .22 .845
                                                              .110 (iii)
.333
                                                                 .845
      *** WARNING: Storage Coefficient is smaller than DT!
                   Use a smaller DT or a larger area.
       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
      CN^* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
           THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0040-----
* NO INFILTRATION
-----
| COMPUTE VOLUME |
| ID:01 (000109) |
                                  DISCHARGE
                                   (cms)
                                                 (hrs)
           START CONTROLLING AT .000 .083
INFLOW HYD. PEAKS AT .110 .333
STOP CONTROLLING AT .000 1.351
                                                 .083
           REQUIRED STORAGE VOLUME (ha.m.)= .0089
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0089
                                       = 99.6850
           % OF HYDROGRAPH TO STORE
           NOTE: Storage was computed to reduce the Inflow
                   peak to
                              .000 (cms).
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME
                   - 1
| ID:01 (000109) |
                                DISCHARGE
                                                  TIME
                                   (cms)
                                                (hrs)
           START CONTROLLING AT
                                     .110
                                                  .333
           INFLOW HYD. PEAKS AT
           STOP CONTROLLING AT
                                      .010
                                                   .892
           REQUIRED STORAGE VOLUME (ha.m.)= .0069
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0089
           % OF HYDROGRAPH TO STORE = 77.4263
           NOTE: Storage was computed to reduce the Inflow
```

```
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                                 DISCHARGE
| ID:01 (000109) |
                                         (cms)
                                                         (hrs)
             START CONTROLLING AT
             INFLOW HYD. PEAKS AT .110
STOP CONTROLLING AT .020
                                                           .333
             STOP CONTROLLING AT
                                            .020
                                                          .571
             REQUIRED STORAGE VOLUME (ha.m.) = .0050
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0089
             % OF HYDROGRAPH TO STORE = 56.5162
             NOTE: Storage was computed to reduce the Inflow
                     peak to
                                    .020 (cms).
* Catchment 110
IMPERVIOUS PERVIOUS (i)
.23 .04
      Surface Area
                         (ha) =
     Dep. Storage (mm) = 1.60 3.20
Average Slope (%) = 1.50 1.50
Length (m) = 155.00 12.00
Mannings n = .013 .250
     Max.eff.Inten.(mm/hr) = 168.14 22.39 over (min) 5.00 10.00 Storage Coeff. (min) = 2.39 (ii) 9.19 (ii) Unit Hyd. Tpeak (min) = 5.00 10.00 Unit Hyd. peak (cms) = .30 .12
                                                                        *TOTALS*
     #TOTALS:

PEAK FLOW (cms) = .10 .00 .097

TIME TO PEAK (hrs) = .33 .50 .333

RUNOFF VOLUME (mm) = .33.55 .7.81 .29.686

TOTAL RAINFALL (mm) = .35.15 .35.15 .35.147

RUNOFF COEFFICIENT = .95 .22 .845
                                                                        .097 (iii)
       *** WARNING: Storage Coefficient is smaller than DT!
                       Use a smaller DT or a larger area.
        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
       CN* = 72.0 Ia = Dep. Storage (Above) (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
             THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0044------
* NO INFILTRATION
| COMPUTE VOLUME |
| ID:01 (000110) |
                                      DISCHARGE
                                                          TIME
             START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .097
STOP CONTROLLING AT .000
                                                         (hrs)
                                                         .083
                                                           .333
                                                         1.339
             REQUIRED STORAGE VOLUME (ha.m.) = .0080
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0080
             % OF HYDROGRAPH TO STORE = 99.6500
             NOTE: Storage was computed to reduce the Inflow
```

peak to .000 (cms).

```
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                                                  hrs)
| ID:01 (000110) |
                                    DISCHARGE
                                                     TIME
            START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .097
STOP CONTROLLING AT .010
                                                    .083
                                                      .333
            REQUIRED STORAGE VOLUME (ha.m.)= .0059
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0080
                                            = 74.1105
            % OF HYDROGRAPH TO STORE
            NOTE: Storage was computed to reduce the Inflow
                    peak to
                              .010 (cms).
 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
| ID:01 (000110) |
                             DISCHARGE
                                                     TIME
                                     (cms)
                                                   (hrs)
                                                    .083
            START CONTROLLING AT
            INFLOW HYD. PEAKS AT .097
STOP CONTROLLING AT .020
                                                      .333
            STOP CONTROLLING AT
                                        .020
                                                      .551
            REQUIRED STORAGE VOLUME (ha.m.) = .0043
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0080
            % OF HYDROGRAPH TO STORE = 53.5622
            NOTE: Storage was computed to reduce the Inflow
                   peak to .020 (cms).
* Catchment 111
*TOTALS*

      PEAK FLOW
      (cms) =
      .18
      .01

      TIME TO PEAK
      (hrs) =
      .33
      .58

      RUNOFF VOLUME
      (mm) =
      33.55
      7.81

      TOTAL RAINFALL
      (mm) =
      35.15
      35.15

      RUNOFF COEFFICIENT =
      .95
      .22

                                                                    .185 (iii)
                                                                      .333
                                                                   21.964
                                                                  35.147
                                                                     .625
       *** WARNING: Storage Coefficient is smaller than DT!
                     Use a smaller DT or a larger area.
        (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
            CN* = 72.0 Ia = Dep. Storage (Above)
       (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
            THAN THE STORAGE COEFFICIENT.
      (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
```

```
* NO INFILTRATION
| COMPUTE VOLUME |
                            DISCHARGE
| ID:01 (000111) |
                                            TIME
                                          (hrs)
                               (cms)
                                .000
          START CONTROLLING AT
                                           .083
                               .185
         INFLOW HYD. PEAKS AT
STOP CONTROLLING AT
                                             .333
                                         .0199
          REQUIRED STORAGE VOLUME (ha.m.)=
          TOTAL HYDROGRAPH VOLUME (ha.m.) =
          % OF HYDROGRAPH TO STORE = 99.7772
          NOTE: Storage was computed to reduce the Inflow
                peak to .000 (cms).
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                         DISCHARGE
| ID:01 (000111) |
                               (cms)
                                          (hrs)
                                          .083
          START CONTROLLING AT
         INFLOW HYD. PEAKS AT .185
STOP CONTROLLING AT
                                          1.104
          REQUIRED STORAGE VOLUME (ha.m.)= .0175
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0200
          % OF HYDROGRAPH TO STORE = 87.4989
          NOTE: Storage was computed to reduce the Inflow
                peak to
                          .010 (cms).
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                                          TIME
(hrs)
.083
| ID:01 (000111) |
                     DISCHARGE
          START CONTROLLING AT .000
INFLOW HYD. FEAKS AT .185
STOP CONTROLLING AT
                                            .333
                                          1.026
          REQUIRED STORAGE VOLUME (ha.m.) = .0156
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0200
          % OF HYDROGRAPH TO STORE = 77.8745
          NOTE: Storage was computed to reduce the Inflow
                peak to .020 (cms).
001:0051----
* Catchment 112
Max.eff.Inten.(mm/hr) = 168.14

over (min) 5.00

Storage Coeff. (min) = 2.37 (ii)
                                          22.39
                                          10.00
                                          10.05 (ii)
                           5.00 10.00
.30 .11
    Unit Hyd. Tpeak (min)=
    Unit Hyd. peak (cms)=
```

```
      PEAK FLOW
      (cms) =
      .14
      .00

      TIME TO PEAK
      (hrs) =
      .33
      .50

      RUNOFF VOLUME
      (mm) =
      33.55
      7.81

      TOTAL RAINFALL
      (mm) =
      35.15
      35.15

      RUNOFF COEFFICIENT =
      .95
      .22

      *** WARNING:
      STANCE COEFFICIENT
      -

                                                     (cms)=
                                                                                                                                                                .137 (iii)
                                                                                                                                                                      .333
                                                                                                                                                               29.686
                                                                                                                             29.686
35.15 35.147
.22
                 *** WARNING: Storage Coefficient is smaller than DT!
                                                   Use a smaller DT or a larger area.
                   (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
                CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
                              THAN THE STORAGE COEFFICIENT.
               (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0052-----
* NO INFILTRATION
| COMPUTE VOLUME |
| ID:01 (000112) |
                                                                            DISCHARGE
                             | Cms 
                             REQUIRED STORAGE VOLUME (ha.m.) = .0113
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0113
% OF HYDROGRAPH TO STORE = 99.7329
                              NOTE: Storage was computed to reduce the Inflow
                                                peak to .000 (cms).
                       * 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
[ ID:01 (000112) |
                                                                       DISCHARGE
                                                                                                                              TIME
                                                                                         (cms)
                                                                                                                           (hrs)
                             START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .137
STOP CONTROLLING AT .010
                                                                                                                                 .333
                                                                                                                          1.010
                             REQUIRED STORAGE VOLUME (ha.m.)= .0094
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0113
% OF HYDROGRAPH TO STORE = 83.3286
                             NOTE: Storage was computed to reduce the Inflow
                                               peak to .010 (cms).
* 200m2 OF INFILTRATION AREA
TIME
                            START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .137
STOP CONTROLLING AT .020
                                                                                                                          (hrs)
                                                                                                                           083
                                                                                                                                .333
                                                                                                                              .651
                             REQUIRED STORAGE VOLUME (ha.m.) = .0072
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0113
                                                                                                        = 63.5308
                              % OF HYDROGRAPH TO STORE
                              NOTE: Storage was computed to reduce the Inflow
                                                                               .020 (cms).
                                                peak to
001:0055-----
* Catchment 113
```

TOTALS

```
-----
    *TOTALS*
    PEAK FLOW (cms)= .15 .00 .146
TIME TO PEAK (hrs)= .33 .50 .333
RUNOFF VOLUME (mm)= 33.55 7.81 29.686
TOTAL RAINFALL (mm)= 35.15 35.15 35.147
RUNOFF COEFFICIENT = .95 .22 .845
                                                     .146 (iii)
     *** WARNING: Storage Coefficient is smaller than DT!
                Use a smaller DT or a larger area.
      (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
     CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
         THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
* NO INFILTRATION
-----
| COMPUTE VOLUME |
                        DISCHARGE
| ID:01 (000113) |
         START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .146
STOP CONTROLLING AT .000
                                        (hrs)
                                        .083
                                        1.417
         REQUIRED STORAGE VOLUME (ha.m.) = .0121
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0122
         % OF HYDROGRAPH TO STORE = 99.7551
         NOTE: Storage was computed to reduce the Inflow
               peak to
                          .000 (cms).
001:0057-----
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                    DISCHARGE
| ID:01 (000113) |
                                         TIME
         START CONTROLLING ÅT .000
INFLOW HYD. PEAKS AT .146
STOP CONTROLLING AT .010
                                        (hrs)
.083
                                          .333
                                        1.017
         REQUIRED STORAGE VOLUME (ha.m.) = .0103
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0122
                                   = 84.5727
          % OF HYDROGRAPH TO STORE
         NOTE: Storage was computed to reduce the Inflow
               peak to .010 (cms).
001:0058------
* 200m2 OF INFILTRATION AREA
______
| COMPUTE VOLUME |
```

```
START CONTROLLING AT .000 .083
                                    .083
        INFLOW HYD. PEAKS AT STOP CONTROLLING AT
                            .146
                                     .333
                            .020
                                     .682
        REQUIRED STORAGE VOLUME (ha.m.)= .0080
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0122
% OF HYDROGRAPH TO STORE = 65.7490
        NOTE: Storage was computed to reduce the Inflow
             peak to .020 (cms).
001:0059-----
* Catchment 114
------
*TOTALS*
.155 (iii)
    *** WARNING: Storage Coefficient is smaller than DT!
              Use a smaller DT or a larger area.
     (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
        CN* = 72.0 Ia = Dep. Storage (Above)
    (ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
        THAN THE STORAGE COEFFICIENT.
    (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
001:0060-----
* NO INFILTRATION
| COMPUTE VOLUME |
| ID:01 (000114) |
                      DISCHARGE
                                     TIME
        START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .155
STOP CONTROLLING AT .000
                                    (hrs)
                                    .083
                                      .333
                                   1.488
        REQUIRED STORAGE VOLUME (ha.m.) = .0136
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0137
                                = 99.7693
        % OF HYDROGRAPH TO STORE
        NOTE: Storage was computed to reduce the Inflow
             peak to .000 (cms).
001:0061-----
* 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
| ID:01 (000114) |
                     DISCHARGE
                                     TIME
                                    (hrs)
                          (cms)
```

DISCHARGE

TIME

| ID:01 (000113) |

```
START CONTROLLING AT .000 .083
INFLOW HYD. PEAKS AT .155 .333
STOP CONTROLLING AT .010 1.029
          REQUIRED STORAGE VOLUME (ha.m.)= .0117
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0137
          % OF HYDROGRAPH TO STORE = 86.0166
          NOTE: Storage was computed to reduce the Inflow
                peak to .010 (cms).
001:0062----
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
| ID:01 (000114) |
                     DISCHARGE
                                            TIME
                                          (hrs)
          START CONTROLLING AT .000
INFLOW HYD. PEAKS AT .155
STOP CONTROLLING AT .020
                                            .083
                                             .333
          REQUIRED STORAGE VOLUME (ha.m.) = .0094
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0137
          % OF HYDROGRAPH TO STORE = 68.9303
          NOTE: Storage was computed to reduce the Inflow
                         .020 (cms).
                 peak to
* Catchment 115
*TOTALS*
                                                       .158 (iii)
      *** WARNING: Storage Coefficient is smaller than DT!
                  Use a smaller DT or a larger area.
       (i) CN PROCEDURE SELECTED FOR PERVIOUS LOSSES:
      CN* = 72.0 Ia = Dep. Storage (Above)
(ii) TIME STEP (DT) SHOULD BE SMALLER OR EQUAL
          THAN THE STORAGE COEFFICIENT.
     (iii) PEAK FLOW DOES NOT INCLUDE BASEFLOW IF ANY.
* NO INFILTRATION
| COMPUTE VOLUME |
| ID:01 (000115) |
                             DISCHARGE
                                             TIME
          ----- (cms) (hrs)
START CONTROLLING AT .000 .083
INFLOW HYD. PEAKS AT .158 .333
```

```
REQUIRED STORAGE VOLUME (ha.m.) = .0139
TOTAL HYDROGRAPH VOLUME (ha.m.) = .0140
% OF HYDROGRAPH TO STORE = 99.7728
          NOTE: Storage was computed to reduce the Inflow
                 peak to
                          .000 (cms).
 100m2 OF INFILTRATION AREA
| COMPUTE VOLUME
| ID:01 (000115) |
                           DISCHARGE
                                             TIME
                               (cms)
                                           (hrs)
         START CONTROLLING AT
                                           .083
          INFLOW HYD. PEAKS AT
STOP CONTROLLING AT
                                 .158
                                              .333
          STOP CONTROLLING AT
                                  .010
                                            1.031
          REQUIRED STORAGE VOLUME (ha.m.)= .0120 TOTAL HYDROGRAPH VOLUME (ha.m.)= .0140
          % OF HYDROGRAPH TO STORE = 86.2904
          NOTE: Storage was computed to reduce the Inflow
                peak to .010 (cms).
* 200m2 OF INFILTRATION AREA
| COMPUTE VOLUME |
                       DISCHARGE
| ID:01 (000115) |
                                             TIME
                               (cms)
                                           (hrs)
                                           .083
          START CONTROLLING AT
          INFLOW HYD. PEAKS AT .158
STOP CONTROLLING AT .020
                                             .333
                                              .757
          REQUIRED STORAGE VOLUME (ha.m.)= .0097
TOTAL HYDROGRAPH VOLUME (ha.m.)= .0140
                                       e 69.5653
          % OF HYDROGRAPH TO STORE
          NOTE: Storage was computed to reduce the Inflow
                            .02\bar{0} (cms).
                 peak to
     ______
001:0067------
     FINISH
******************
    WARNINGS / ERRORS / NOTES
001:0003 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                  Use a smaller DT or a larger area.
 001:0007 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                 Use a smaller DT or a larger area.
001:0011 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                  Use a smaller DT or a larger area.
 001:0015 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                 Use a smaller DT or a larger area.
 001:0019 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                  Use a smaller DT or a larger area.
 001:0023 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                  Use a smaller DT or a larger area.
 001:0027 CALIB STANDHYD
     *** WARNING: Storage Coefficient is smaller than DT!
                  Use a smaller DT or a larger area.
```

.000

STOP CONTROLLING AT

```
001:0031 CALIB STANDHYD
*** WARNING: Storage
```

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0035 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!

Use a smaller DT or a larger area.

001:0039 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0043 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0047 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0051 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0055 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0059 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

001:0063 CALIB STANDHYD

*** WARNING: Storage Coefficient is smaller than DT!
Use a smaller DT or a larger area.

Simulation ended on 2003-11-26 at 00:29:41

4